1. F. Buckley, F. Harary, Distances in Graphs, Addison-Wesley, Redwood, 1990.
2. X. Cai, B. Zhou, Reciprocal Complementary Wiener number of trees, unicyclic
graphs and bicyclic graphs, Discrete Appl. Math. 157 (2009) 3046−3054.
3. O. Ivanciuc, QSAR Comparative study of Wiener descriptors for weighted
molecular graphs, J. Chem. Inf. Comput. Sci. 40 (2000) 1412−1422.
4. O. Ivanciuc, T. Ivanciuc, A. T. Balaban, Quantitative structure property relationship
evaluation of structural descriptors derived from the distance and reverse Wiener
matrices, Internet Electron. J. Mol. Des. 1 (2002) 467−487.
5. O. Ivanciuc, T. Ivanciuc, A. T. Balaban, Vertex and edge-weighted molecular
graphs and derived structural descriptors, in: J. Devillers, A. T. Balaban (eds.),
Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and
Breach, Amsterdam, (1999) 169−220.
6. X. Qi, B. Zhou, Extremal properties of reciprocal complementary Wiener number
of trees, Comput. Math. Appl. 62 (2011) 523−531.
7. H. S. Ramane, A. B. Ganagi, H. B. Walikar, Wiener index of graphs in terms of
eccentricities, Iranian J. Math. Chem. 4 (2013) 239−248.
8. H. S. Ramane, V. V. Manjalapur, Reciprocal Wiener index and reciprocal
complementary Wiener index of line graphs, Indian J. Discrete Math. 1 (2015)
23−32.
9. H. S. Ramane, V. V. Manjalapur, Some bounds for Harary index of graphs, Int. J.
Sci. Engg. Res. 7 (2016) 26−31.
10. N. Trinajstić, Chemical Graph Theory, 2nd revised ed., CRC Press. Boca Raton,
1992.
11. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69
(1947) 17−20.
12. K. Xu, M. Liu, K. C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with
respect distance based topological indices, MATCH Commun. Math. Comput.
Chem. 71 (2004) 461−508.
13. B. Zhou, X. Cai, N. Trinajstić, On reciprocal complementary Wiener number,
Discrete Appl. Math. 157 (2009) 1628−1633.
14. Y. Zhu, F. Wei, F. Li, Reciprocal complementary Wiener numbers of noncaterpillars,
Appl. Math. 7 (2016) 219−226.