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ABSTRACT.  The k−th semi total point graph of a graph G, )(GR k  ,  is a graph  obtained 

from G by adding k vertices corresponding to each edge and  connecting them to the 
endpoints of edge considered .  In this paper , a formula for Laplacian polynomial of )(GR k  

in terms of  characteristic and Laplacian polynomials of G is computed ,  where G  is a 
connected regular graph . The Kirchhoff index of )(GR k  is also computed . 
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1. INTRODUCTION1
 

 Let ))(),(( GEGVG =  be a simple connected ),( mn −graph with vertex set 

},,,{)( 21 nvvvGV K=  and edge set },,,{)( 21 neeeGE K= . The adjacency and 

incidence matrices of G are denoted by )(GA  and )(GB ,  respectively . The eigenvalues 

)()()( 21 GGG nλλλ ≥≥≥ K  of G  are the eigenvalues of )(GA .  Let id  be the degree 

of vertex  )(GVvi ∈  and  ),,,()( 21 nddddiagGD K=  be the diagonal matrix of G  .  

The matrix )()()( GAGDGL −=  is called the Laplacian matrix of G  and its 

eigenvalues are called the Laplacian  eigenvalues of G. By a well−known result in 
algebraic graph theory it is possible to order the Laplacian  eigenvalues of G as 

0)()()( 21 =≥≥≥ GGG nµµµ K .  Also ,  the polynomials ))G(Andet()(G −Ιλ=λφ  

and  ))G(Lndet()(G −Ιλ=λµ  are called the characteristic  and Laplacian polynomials 

of G ,  respectively .  Moreover ,  the distance between vertices iv  and jv  ,  denoted by ijd  , 

 is the length of a shortest path connecting them .  The Wiener index is the first graph 
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invariant applicable in chemistry based on distance in a graphs [10],  which counts the 
sum of distances between pairs of  vertices in the graph .  

 In 1993 ,  Klein and Randić defined a new distance function  named resistance 

distance in terms of electrical network theory [6].  If iv  and jv  are vertices of G  then 

the resistance distance between these vertices are denoted by ijr  .  This new distance is an 

effective resistance between nodes iv  and jv  according to Ohm's law .  Notice that all the 

edges of G  are considered to be unit resistors . The summation of all resistance 

distances between pair of vertices ,  ∑ <= ji ijr)G(Kf ,  is called the Kirchhoff index of 

G [1].  
Suppose )(GR  denotes a graph constructed from G  by adding a new vertex  

corresponding to each edge and connecting it to the endpoints of  edge considered .  This 
graph is called the semi total point graph .  In Figure 1 ,  a graph G and its semi total graph 

are depicted. Jog et al . [5],  introduced a k−step generalization of )(GR  ,  denoted by 

)(GR k  .  To define ,  we assume that G  is a simple graph of order n  possessing m edges 

and k is a natural number .  The −k th  semi total point graph of G  ,  denoted by  )(GR k , 

 is the graph obtained by adding k vertices to each edge of G  and joining them to the 
endpoints of the respective edge . Obviously ,  this is equivalent to adding k triangle to 
each edge of G . Clearly, this graph has order mkn +  containing mk)21( +  edges .  In 

Figure 2 ,  the graphs G  and )(3 GR  are depicted . 

 
                (a)                                                                         (b) 

 

Figure 1. (a) The Graph G .  (b) The Graph R(G). 
 
 

2. THE LAPLACIAN POLYNOMIAL OF )(GR k
  

 Let G  be a regular graph .  In [9], the Laplacian polynomial )(GR  is determined by the 

characteristic and the Laplacian polynomials of G .  The characteristic polynomial of 

)(GR k calculated in [5]. In this section ,  we use a similar method to calculate the 
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Laplacian polynomial of )(GR k , for 2≥k .  The following two results are crucial 

throughout this paper . 
 
Theorem 1. ([5]) If  G  is a regular graph of order n  and degree r , then for any 1≥k  , 

 the characteristic polynomial of the −k th semi total point graph )(GR k  is given by  

),()()),((
2

k

kr
GkGR nnmkk

+
−

+= −
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φλλλφ , 

 where 
2
nr

m =  is the number of edges of G  . 

 Lemma 2.  ([2]) Let M be a non−singular square matrix .  Then  
 

).1det(detdet NPMQM
QP
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                (a)                                                                   (b) 
 

Figure 2. (a) The Graph G.   (b) The k−th Semi Total Point Graph for k = 3. 
 

 Theorem 3.  Let G  be a connected −r regular graph with n  vertices  and m edges . 
 Then  
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Proof. (i). Let )(GA  and )(GB  be the adjacency and incidence matrices of G , 

respectively ,  and 
nI  be a unit matrix of order n .  By [5],  the adjacency  and distance 

matrices of )(GR k  can be computed as follows : 
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(ii). By considering )()()( GAGDGL −=  in (1) ,  we have : 
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3. THE KIRCHHOFF INDEX OF )(GR k  

In this section ,  we will compute the Kirchhoff index of )(GR k , G  is regular, by using 

the results obtained in the previous section .  Gutman and Mohar [4] and Zhu [12] proved  
the following relationship between the Kirchhoff and the Laplacian eigenvalues of a 
graph : 
 
Lemma 4. ([4, 12]).  Let G  be a connected graph with 2≥n  vertices . Then  

∑
−

=

=
1
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)(
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Let iδ be the degree of vertex )(GVvi ∈  .  Zhou and Trinajstić [11] proved that : 

 
Lemma 5.  Let G  be a connected graph with 2≥n  vertices .  Then  
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 with equality attained if and only if nKG ≅ or tntKG −≅ ,  for .
2

1 




≤≤
n

t  

 
  Gao ,  Luo and Liu in [3] obtained the Kirchhoff index of a graph G  in terms  of 
coefficients of the Laplacian polynomials as follows : 
 
Lemma 6. [3] .  Let G  be a connected graph with 2≥n  vertices and 
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Theorem 7. Let G  be a connected −r regular graph with n  vertices .  Then  
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 Now by substituting 
2
nr

m =  in the above equation the proof is completed .                  ▀ 

 
  In what follows ,  we give a lower bound for the Kirchhoff index of )(GR k  ,  when 

G  is  a connected regular graph . 
 
Corollary 8.  Let G  be a r −regular graph with n  vertices .  Then , 
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Proof. By Lemma 5 and Theorem 7 , we have: 
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proving the result. Clearly ,  this equality is attained if and only if nKG ≅ or 

2/,2/ nnKG ≅  and n  is even .                                                                                         ▀ 

 
4. EXAMPLES 
 
 The aim of this section is to compute the Kirchhoff index of k −th semi total point  
 special connected regular graphs . 
 
Example 9. The complete graph nK ,  2≥n  .  It is well known that nK  is 

)1( −n −regular and 1)( −= nKKf n  .  Hence , 
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Example 10. The complete bipartite graph nnK , . It is well known that nnK ,  is 

n −regular graph with n2  vertices .  By [3] , ,34)( , −= nKKf nn   and so  

.
8

8)422(24
)2(2

)224)34)(2)((2(

2

2

8

)422(2)2(

)2(2

)2))(2(2)2((
),(

)2(2

2)2(
)),((

nnkn

k

nnnknkn

nnkn

k

knnn
nnKKf

k

kn
nnK

kRKf

+−
+

+
−+−++

=

+
−

+
+

+−
+

+
+

=

 

Example 11. The cycle nC  .  By [8] 
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−
=  and so , 
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Example 12. The hypercube nQ . In [7] ,  Liu et al .  proved that nQ  is n−regular graph 

with n2  vertices and  ∑ == n
i i

i
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Example 13. The cocktail−party graph )(nCP . The cocktail−party graph )(nCP  is an 

(2n−2)−regular graph with 2n vertices and  
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which completes our argument. 
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