1. M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Localization of graph
topological indices via majorization technique, in: M. Dehmer, F. Emmert-Streib
(Eds.), Quantitative Graph Theory–Mathematical Foundations and Applications,
CRC Press, Boca Raton, 2015, pp. 35–79.
2. M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Bounds for the global cyclicity
index of a general network via weighted majorization, J. Inequal. Appl. (2015)
DOI:10.1186/s13660-015-0624-5.
3. M. Bianchi, G. P. Clemente, A. Cornaro, J. L. Palacios, A. Torriero, New Trends
in majorization techniques for bounding topological indices, in: I. Gutman, B.
Furtula, K. C. Das, E. Milovanović, I. Milovanović (Eds.), Bounds in Chemical
Graph Theory Basics, Mathematical Chemistry Monographs, No. 19, University of
Kragujevac, Kragujevac, 2017, pp. 3–66.
4. H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum,
Discrete Appl. Math. 155 (2007) 654–661.
5. K. C. Das, On geometric-arithmetic index of graphs, MATCH Commun. Math.
Comput. Chem. 64 (2010) 619–630.
6. K. C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of
graphs, MATCH Commun. Math. Comput. Chem. 65 (2011) 595–644.
7. K. C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs,
Discrete Appl. Math. 159 (2011) 2030–2037.
8. K. C. Das, N. Trinajstić, Comparison between first geometric-arithmetic index and
atom-bond connectivity index, Chem. Phys. Lett. 497 (2010) 149–151.
9. M. Eliasi, A simple approach to order the multiplicative Zagreb indices of
connected graphs, Trans. Comb. 1 (2012) 17–24.
10. D. J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance
deficit, J. Math. Chem. 30 (2001) 271–287.
11. A. W. Marshall, I. Olkin, Inequalities–Theory of Majorization and its Applications,
Academic Press, London, 1979.
12. M. Mogharrab, G. H. Fath-Tabar, Some bounds on GA1 index of graphs, MATCH
Commun. Math. Comput. Chem. 65 (2010) 33–38.
13. J. L. Palacios, Some inequalities for Laplacian descriptors via majorization,
MATCH Commun. Math. Comput. Chem. 77 (2017) 189–194.
14. J. L. Palacios, J. M. Renom, Another look at the degree-Kirchhoff index, Int. J.
Quant. Chem. 111 (2011) 3453–3455.
15. Z. Raza, A. A. Bhatti, A. Ali, More on comparison between first geometricarithmetic
index and atom-bond connectivity index, Miskolc Math. Notes 17
(2016) 561–570.
16. J. M. Rodŕıguez, J. M. Sigarreta, On the geometric-arithmetic index, MATCH
Commun. Math. Comput. Chem. 74 (2015) 103–120.
17. J. M. Rodŕıguez, J. M. Sigarreta, Spectral study the geometric-arithmetic index,
MATCH Commun. Math. Comput. Chem. 74 (2015) 121–135.
18. J. M. Rodŕıguez, J. A. Rodŕıguez-Velázquez, J. M. Sigarreta, New inequalities involving
the geometric-arithmetic index, arXiv:1611.04187v1 (2016).
19. D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and
arithmetical mans of end vertex degrees of edges, J. Math. Chem. 46 (2009) 1369–
1376.
20. R. J. Wilson, Introduction to Graph Theory, Oliver & Boyd, Edinburgh, 1972.
21. Y. Yang, On a new cyclicity measure of graphs–The global cyclicity index,
Discrete Appl. Math. 172 (2014) 88–97.
22. Y. Yang, Resistance distances and the global cyclicity index of fullerene graphs
Dig. J. Nanomater. Biostruct. 7 (2012) 593–598.
23. Y. Yang, Y. Wang, Y. Li, The global cyclicity index of benzenoid chains, J. Chem.
(2013) Article ID 483962.
24. Y. Yuan, B. Zhou, N. Trinajstić, On geometric-arithmetic index, J. Math. Chem.
47 (2010) 833–841.