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For an arbitrary graph G, the irregularity and total irregularity of G are 
defined as irr(G)  =  ∑ |dୋ(u)− dୋ(v)|୳୴∈୉(ୋ)  and  irr୲(G) =
1/2∑ |dୋ(u) − dୋ(v)|୳,୴∈୚(ୋ) , respectively, where dୋ(u) is the degree 
of vertex u. In this paper, we characterize all connected Eulerian graphs 
with the second minimum irregularity, the second and third minimum 
total irregularity, respectively. 
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1.  INTRODUCTION  

Throughout this paper, G is a simple and connected graph with the vertex and edge sets V(G) 
and E(G), respectively. For a graph G, there is a novel notion named third Zagreb polynomial, 
defined as Mଷ(G, x) = ∑ x|ୢృ(୳)ିୢృ(୴)|

୳୴∈୉(ୋ) . Astaneh-Asl et al. [7] studied Mଷ(G, x) of 
Cartesian product of two graphs and a type of dendrimers. In special case, the value of 
derivative of this polynomial at point x = 1 is well known as the irregularity of  G and 
denoted by irr(G), which was already proposed by Albertson [6]. In the other words 

irr(G) =  ∑ |dୋ(u) − dୋ(v)|୳୴∈୉(ୋ)                                      (1)  
In [6], Albertson gave some upper bounds on irregularity for trees, bipartite, and 

triangle-free graphs. Recall that the first Zagreb index Mଵ and the second Zagreb index Mଶ of 
are defined as Mଵ(G) ܩ = ∑ dୋଶ(u)୳∈୚(ୋ)  and Mଶ(G) = ∑ dୋ(u). dୋ(v)୳୴∈୉(ୋ) , respectively. 
These indices were introduced in [16] and reflect the extent of branching of the molecular 
carbon-atom skeleton and can be viewed as molecular structure-descriptors [8,25]. Moreover, 
the values of these indices are computed for a class of nanostar dendrimers in [26]. Fath-Tabar 
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[14] named the sum in (1) the third Zagreb index, and established new bounds on the first and 
second Zagrab indices that depend on irr(G). Zhou and Luo obtained the relationship between 
irregularity and first Zagreb index of graphs, and also they determined the graphs with 
maximum irregularity among trees and unicyclic graphs with given matching number and 
number of pendent vertices [19, 29]. Hansen and Melot determined the maximum irregularity 
of graphs with n vertices and m edges [17]. Moreover, Abdo and Dimitrov considered the 
irregularity of graphs under several graph operations [5]. Previously, we characterized all 
graphs with the second minimum of the irregularity in [20]. Also, we studied in [15, 21], trees 
and unicyclic graphs whose irregularity is extremal. More works about this graph invariant 
have been reported in [2, 9, 18, 22−24]. 

Recently, Abdo et al. [1] introduced a new measure of irregularity of a graph, so-called 
the total irregularity, as  irr୲(G) = 1/2∑ |dୋ(u)− dୋ(v)|୳,୴∈୚(ୋ) . For a connected graph G, 
the irregularity indices irr and irr୲ were compared in [12], where it was shown that irr୲(G) ≤
nଶ/4irr(G). Furthermore, they proved that if G is a tree, then irr୲(G) ≤ (n− 2) × irr(G). 
Abdo and Dimitrov [4] gave the upper bounds on ݅ݎݎ௧ of graphs under several graph 
operations including lexicographic, Cartesian, strong, direct, and corona products, also join, 
disjunction and symmetric difference. In [1], graphs with maximal total irregularity were 
characterized and the upper bound on the total irregularity of graphs was obtained. In special 
classes of graphs, such as trees, unicyclic and bicyclic graphs, this invariant has been studied 
in [13, 27, 28]. 

An Eulerian circuit is a closed walk in a graph that visits every edge of the graph once 
and only once. A graph containing an Eulerian circuit is called an Eulerian graph. The study 
of these graphs was initiated in 1736. Their study is a very fertile field of research for graph 
theorists. Although, in the graph theory, the term Eulerian graph has two common meanings, 
i.e. a graph with an Eulerian circuit, or a graph with every vertex of even degree. Note that in 
the case of connected graph, these definitions are equivalent [10]. 

The aim of this paper is to study the irregularity and total irregularity of connected 
Eulerian graphs. In Section 2, we show that the irregularity of an Eulerian graph is a 
multiple of 4, and by using it, we characterize all   Eulerian graphs with the second 
minimum irregularity value. Finally in Section 3, we determine graphs with the second 
and third minimum of total irregularity value over the class of all connected Eulerian 
graphs. 

2. THE SECOND MINIMUM IRREGULARITY OF   EULERIAN GRAPHS 

In this section,we first restate a proven result in [10], which is needful for proving that the 
irregularity of   Eulerian graphs is divisible by 4. Afterwards, we would able to determine the 
  Eulerian graphs with the second minimum irregularity value. 
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Lemma 2.1. [10] A connected graph is Eulerian if and only if each of its vertices has even 
degree. 

Theorem 2.2. Let ܩ be an Eulerian graph with ݊ vertices, then ݅(ܩ)ݎݎ = 4݇, for some non-
negative integer ݇. 

Proof. We prove the theorem by induction on n. Obviously, for n = 1, we have  irr(Kଵ) = 0. 
Suppose that for any Eulerian graph H on less than n vertices, irr(H) = 4k, for some non-
negative integer k. Now, we shall show that if G is an Eulerian graph on n vertices, then there 
exists a non-negative integer k′ with irr(G) = 4k′. To show this, we shall use induction on 
the number of edges. For m = 0, it is obvious that irr൫K୬൯ = 0. By induction on m, suppose 
that for any n-vertex Eulerian graph H, which has less than m edges, we have irr(H) = 4k, 
for some non-negative integer k. Let G be an n-vertex Eulerian graph with m edges. Let 
C୯ = vଵvଶ⋯ v୯vଵ be the smallest simple cycle in G, and H = G − E(C୯). If H = K୬, then 
G = C୯, and therefore irr(G) = 0. If H ≠ K୬, then either H is an n-vertex Eulerian graph 
with less than m edges, or each of connected components of H is an Eulerian graph on less 
than n vertices. Therefore, by inductions’ hypotheses, there is some k ≥ 0 such that irr(H) =
4k. For convenience, we use the following notations: 

             Eᇱ = ൛xv ∈ E(H) ∶ v ∈ V൫C୯൯& ݔ ∈ ܸ(G) ∖ V൫C୯൯ൟ, 

        d୪(v) = |{xv ∈ E′ ∶ dୌ(x) ≤ dୌ(v)}|, 

       d୥(v) = |{xv ∈ E′ ∶ dୌ(x) > dୌ(v)}|, 

    sign(s) = ൜1      ;  s = l
−1   ; s = g. 

Assume that v୯ାଵ = vଵ. With above notations, one can immediately see that for any 
vertex v୧ of C୯, dୌ(v୧) = d୪(v୧) + d୥(v୧). Note that by the choice of C୯, there is no non-
consecutive indices i and j such that v୧v୨ ∈ E(G). Moreover, for any edge xv ∈ E′, if dୌ(x) ≤
dୌ(v), then 

|dୋ(x) − dୋ(v)| − |dୌ(x) − dୌ(v)| = 2 = 2 sign(l). 

Moreover, if dୌ(x) > dୌ(v) then  
|dୋ(x) − dୋ(v)| − |dୌ(x) − dୌ(v)| = −2 = 2 sign(g). 

Now, we have: 

irr(G) − irr(H) =  ∑ |dୋ(u) − dୋ(v)|୳୴∈୉൫େ౧൯    + ∑ (|dୋ(x)− dୋ(v)|− |dୌ(x) − dୌ(v)|)୶୴∈୉ᇲ    

                          =  ∑ |dୋ(u)− dୋ(v)|୳୴∈୉൫େ౧൯ + 2∑ ቀd୪(v) − d୥(v)ቁ୴∈୚൫େ౧൯  

             = ∑ ቀ|dୋ(u) − dୋ(v)| + d୪(u) − d୥(u) + d୪(v) − d୥(v)ቁ୳୴∈୉൫େ౧൯  = ∑ r୧
୯
୧ୀଵ . 
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such that for any  i = 1,2, … , q, 

r୧ = |dୋ(v୧) − dୋ(v୧ାଵ)| + d୪(v୧) − d୥(v୧) + d୪(v୧ାଵ) − d୥(v୧ାଵ). 

One can easily check that if dୋ(v୧ାଵ) ≤ dୋ(v୧), then  

r୧ = 2d୪(v୧) − 2 d୥(v୧ାଵ) = 2 sign(l)d୪(v୧) + 2 sign(g)d୥(v୧ାଵ), 

and if dୋ(v୧ାଵ) > dୋ(v୧), then  

r୧ = −2 d୥(v୧) + 2d୪(v୧ାଵ) = 2 sign(g)d୥(v୧) + 2 sign(l)d୪(v୧ାଵ). 

Hence, for some suitable s୧, s୧ᇱ ∈ {l, g}, where 1 ≤ i ≤ q, we can write the following: 

   irr(G)− irr(H) = ∑ r୧
୯
୧ୀଵ   = ቀ2 sign(sଵ)dୱభ(vଵ) + 2 sign(sଶᇱ )dୱమᇲ (vଶ)ቁ 

                                + ቀ2 sign(sଶ)dୱమ(vଶ) + 2 sign(sଷᇱ )dୱయᇲ (vଷ)ቁ + ⋯ 

 + ൬2 sign൫s୯൯dୱ౧൫v୯൯ + 2 sign(sଵᇱ )dୱభᇲ (vଵ)൰ 

 = ∑ ൬2 sign(s୧)dୱ౟(v୧) + 2 sign(s୧ᇱ)dୱ౟ᇲ(v୧)൰
୯
୧ୀଵ  

 = 2∑ ൬sign(s୧)dୱ౟(v୧) + sign(s୧ᇱ)dୱ౟ᇲ(v୧)൰
୯
୧ୀଵ   

 = 2∑ t୧.
୯
୧ୀଵ  

For each i = 1,2, … , q, there exist three cases as follow: 

1) If s୧ = s୧ᇱ = l, then t୧ = 2 d୪(v୧). 

2) If s୧ = s୧ᇱ = g, then t୧ = −2 d୥(v୧). 

3) If s୧ ≠ s୧ᇱ, then t୧ = d୪(v୧) − d୥(v୧). 

Since dୋ(v୧) = d୪(v୧) + d୥(v୧) is even, d୪(v୧) − d୥(v୧) is even, too. Therefore, in all of the 
above cases, t୧ is even. Thus, 

                       irr(G)− irr(H) = 2∑ t୧
୯
୧ୀଵ = 4∑ ቀଵ

ଶ
ቁ t୧

୯
୧ୀଵ = 4k′′ 

where k′′ is an integer. Hence, the theorem is proved by induction.                                           □ 

Obviously, for a connected graph G, irr(G) = 0 if and only if it is a regular graph. 
Therefore, we have the following result: 

Corollary 2.3.  For a non-regular connected   Eulerian graph ܩ of order ݊, irr(ܩ) ≥ 4. 

We know that the minimal irregularity of graphs is zero. Obviously, the irregularity of 
a graph is zero if and only if all of its connected components are regular. Since for each 
positive integer r ≥ 1, each connected 2r-regular graph is an Eulerian graph, hence the first 
minimum irregularity of Eulerian graphs is zero; and  by Theorem 2.2, we conclude that the 
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second minimum of the irregularity of Eulerian graphs is 4. In the following theorem we 
characterize connected Eulerian graphs with the second minimum irregularity. 

Theorem 2.4. There are  12   types of connected  Eulerian    graphs with irregularity value 4, 
where the general forms and examples of them are shown in Figure 1 and Table 1, 
respectively. 

Proof.  Let G be a connected Eulerian graph with irr(G) = 4. For each edge uv of G, set 
irr(uv) = |dୋ(u)− dୋ(v)|, so we can write  irr(G) = ∑ irr(uv)୳୴∈୉(ୋ) . The proof 
continues in three separate cases as follows: 
 

Case 1. Let xy be an edge of G such that irr(xy) = 4. Since G is a connected Eulerian 
graph, there is a cycle xyvଵvଶ⋯ v୩x in G containing edge xy. Clearly, since  irr(G) =
irr(xy) = 4, then irr(yvଵ) = irr(vଵvଶ) = ⋯ = irr(v୩x) = 0 and we deduce that dୋ(y) =
dୋ(vଵ) = dୋ(vଶ) = ⋯ = dୋ(v୩) = dୋ(x), which is a contradiction. Therefore, this case 
does not occur. 
 

Case 2. There are two edges xy and xz such that irr(xy) = irr(xz) = 2. It is clear 
that  yxz is a path from vertex y to vertex z. Suppose U = {uଵ, uଶ, … , uୱ} and V =
{vଵ, vଶ, … , v୰} are subsets of vertices of G such that x, y, z ∉ U, V. Also assume that 
yuଵuଶ⋯ uୱxz and yxvଵvଶ⋯ v୰z are two paths in G from vertex y to vertex z containing 
vertex x. Since irr(G) = irr(xy) + irr(xz), then 

irr(yuଵ) = irr(uଵuଶ) = ⋯ = irr(uୱx) = irr(xvଵ) = irr(vଵvଶ) = ⋯ = irr(v୰z) = 0. 
Consequently, dୋ(x) = dୋ(y) = dୋ(z), which is a contradiction . Thus, two subcases will be 
considered as: 
(۷) There are two paths from vertex y to vertex z such that vertex x belongs to only one of 

them. Assume that yuଵuଶ⋯ uୱz is a path in G, so dୋ(y) = dୋ(z). Therefore, G is 
constructed of two separated components Gଵ and Gଶ that are connected by edges xy and 
xz, which x ∈ V(Gଵ) and y, z ∈ V(Gଶ). Let |V(Gଵ)| = k and |V(Gଶ)| = n − k. Thus, we 
may consider two different parts as follows: 

(i) dୋ(x) = a, dୋ(y) = dୋ(z) = a − 2 ; 
(ii) dୋ(x) = a, dୋ(y) = dୋ(z) = a + 2. 

In part(i), for any u in V(Gଵ)\{x}, dୋభ(u) = a, dୋభ(x) = a − 2, and for any vertex 
u in V(Gଶ)\{y, z},  dୋమ(u) = a − 2,  dୋమ(y) = dୋమ(z) = a − 3. Therefore, 2|E(Gଵ)| =
ka − 2, 2|E(Gଶ)| = n(a − 2) − ka + 2(k − 1), Gଵ is a (2t + 2)-regular graph, and Gଶ 
is a 2t-regular graph, for some t ≥ 1. Consequently, ka and n(a − 2) are even. Since a is 
even, k and n can be odd or even. Thus, four types will occur (see Table 1, types 1-4). 

In part(ii), we have 2|E(Gଵ)| = ka − 2, 2|E(Gଶ)| = (n − k)(a + 2) − 2. 
Consequently, k and n can be odd or even. Thus, we have four further types (see Table 1, 
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types 5−8). Note that in these types, Gଵ is a 2t-regular graph and Gଶ is a (2t + 2)-regular 
graph, for some t ≥ 1. 

(۷۷) There is only one path, say yxz, joining vertices y and z which contains vertex x. Suppose 
xuଵuଶ⋯ uୱy and xvଵvଶ⋯ v୰z are two paths in G, where uଵ ≠ z and vଵ ≠ y. Since 
irr(G) = irr(xy) + irr(xz), then by above assumptions, dୋ(x) = dୋ(y) = dୋ(z), 
which is a contradiction to irr(xy) = irr(xz) = 2. Therefore, G is composed of three 
separate components Gଵ, Gଶ and Gଷ where Gଵ and Gଶ are connected by edge xy, Gଵ and 
Gଷ are connected by edge xz, x ∈ V(Gଵ), y ∈ V(Gଶ), z ∈ V(Gଷ), V(G) = V(Gଵ) ∪
V(Gଶ) ∪ V(Gଷ) and E(G) = E(Gଵ) ∪ E(Gଶ) ∪ E(Gଷ) ∪ {xy, xz}. Obviously,  
2|E(Gଶ)| + 1 = ∑ dୋ(u)୳∈୚(ୋమ)  but dୋ(u)  is even, for any vertex u of G. Therefore, 
this subcase does not occur. 

 
Case 3. There are two distinct edges xy and uv such that irr(xy) = irr(uv) = 2. As case 

2, we may again check this case in two subcases as follows: 
(۷) vertices y and u belong to all paths from vertex x to vertex v; 
(۷۷) There are two paths from vertex x to vertex v such that vertices y and u belong to 
only one of them.  

Similar to case 2, in subcase (۷), G is constructed of three separate components Gଵ, Gଶ  
and Gଷ, where Gଵand Gଶare connected by edge xy, and Gଶ, Gଷ are connected by edge uv, 
x ∈ V(Gଵ), y, u ∈ V(Gଶ), v ∈ V(Gଷ), V(G) =  V(Gଵ) ∪ V(Gଶ) ∪ V(Gଷ) and E(G) = E(Gଵ) ∪
E(Gଶ) ∪ E(Gଷ) ∪ {xy, uv}. Obviously,  2|E(Gଵ)| + 1 = ∑ dୋ(w)୵∈୚(ୋభ)  but dୋ(w)  is 
even, for any vertex w of G. Therefore, this case does not occur. 

In subcase (۷۷), we can see that G is composed of two separate components  Gଵ, Gଶ 
where Gଵ and Gଶ are connected by edges xy and uv, also x, v ∈ V(Gଵ) and y, u ∈ V(Gଶ). Let 
dୋ(x) = a, |V(Gଵ)| = k and |V(Gଶ)| = n − k. Without loss of generality, in the case (۷۷), we 
can consider following two parts: 

(i) dୋ(x) = dୋ(v) = a, dୋ(y) = dୋ(u) = a + 2 ; 
(ii) dୋ(x) = dୋ(v) = a, dୋ(y) = dୋ(u) = a − 2. 

A similar argument as case 2, in part(i), k and n can be odd or even . Thus we have 
another four types (see Table.1, types 9−12). Note that, the graphs in parts(ii) and (i) are 
identical, where Gଵ is 2t-regular, and Gଶ is (2t + 2)-regular, for some t ≥ 1.                          □ 

Note that, in generally, the irregularity of a graph is equal to the summation of its 
connected components’ irregularities. Therefore, if G is an n-vertex (not necessary 
connected) Eulerian graph with irr(G) = 4, then Theorem 2.2 implies that G ≅ G′ ∪ Kୱ, 
where G′ is a connected Eulerian graph on n − s vertices with irr(G′) = 4. 
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General form of types 1−8 General form of types 9−12 

Figure 1. General forms of Eulerian graphs with the second minimum irregularity. 

 

Type 1 Type 2 Type 3 

   
n=13,k=8,a=6,t=2 n=9,k=7,a=4,t=1 n=10,k=6,a=4,t=1 

Gଵ: (2t + 2)-regular Gଵ: (2t + 2)-regular Gଵ: (2t + 2)-regular 
Gଶ: 2t-regular Gଶ: 2t-regular Gଶ: 2t-regular 

Type 4 Type 5 Type 6 

  
 

n=14,k=9,a=6,t=2 n=6,k=1,a=2,t=1 n=14,k=6,a=4,t=2 
Gଵ: (2t + 2)-regular Gଵ: 2t-regular Gଵ: 2t-regular 

Gଶ: 2t-regular Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular 
Type 7 Type 8 Type 9 

 

 

  
n=15,k=7,a=4,t=2 n=19,k=8,a=4,t=2 n=8,k=2,a=2,t=1 

Gଵ: 2t-regular Gଵ: 2t-regular Gଵ: 2t-regular 
Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular 

Table 1. Examples of Eulerian graphs with the second minimum irregularity. 
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Type 10 Type 11 Type 12 

   
n=13,k=5,a=4,t=2 n=9,k=2,a=2,t=1 n=14,k=5,a=4,t=2 

Gଵ: 2t-regular Gଵ: 2t-regular Gଵ: 2t-regular 
Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular Gଶ: (2t + 2)-regular 

Table 1. (Continued). 
 

3. THE SECOND AND THIRD MINIMUM TOTAL IRREGULARITY FOR 

  EULERIAN GRAPHS  
In this section, first we express some initially basic definitions and a prominent proved 
result of [3], and then investigate the second and third minimum total irregularity of 
connected Eulerian graphs. 

If V(G)  = {vଵ, vଶ, . . . , v୬}, then the sequence ൫dୋ(vଵ), dୋ(vଶ), . . . , dୋ(v୬)൯ is 
called a degree sequence of G [11]. Without loss of generality, we may assume that 
dୋ(vଵ) ≥ dୋ(vଶ) ≥. . .≥ dୋ(v୬). A bicyclic graph is a simple connected graph in which 
the number of edges equals to n + 1. A basic bicyclic ∞-graph, denoted by ∞(p, q, l), is 
obtained from two vertex-disjoint cycles C୮ and C୯ by connecting one vertex of C୮ and 
one of C୯ with a path P୪ of length l − 1 (in the case of l =  1, identifying the above two 
vertices) where p, q ≥  3 and l ≥  1. 

Clearly, a graph G has total irregularity zero if and only if G is a regular graph. 
Note that the connected 2r-regular graph, is an Eulerian graph with irr୲ = 0. Hence,the 
first minimum total irregularity of Eulerian graphs is zero. Moreover the corresponding 
extremal Eulerian graphs with total irregularity 0 are exactly all 2r-regular Eulerian 
graphs, where r ≥ 0, and if r > 0 then the graph is connected. In [3], the authors 
characterized the non-regular graphs with the second and the third smallest total 
irregularity. 

Lemma 3.1. [3]  Let G be a simple connected graph with ݊ vertices. If ܩ is a non-regular  
graph, then ݅ݎݎ௧(ܩ) ≥  2݊ −  4. 

In the following result, we show that the second minimum of the total irregularity 
of Eulerian graphs is 8 and determine the unique Eulerian graph with irr୲ = 8. 

u 
v 

x 
y 

u v 

x y 

u v 

x 
y 
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Theorem 3.2. Let ܩ be a connected non-regular   Eulerian graph of order݊, then irr୲(ܩ) ≥
8, and the equality holds if and only if ܩ ≅ ∞(3,3,1), where the bicyclic graph ∞(3,3,1) 
is shown in Figure 2. 
 

∞(3,3,1) 
Figure 2. Unique Eulerian graph with the second minimum total irregularity. 

Proof. By Lemma 3.1, if n ≥ 7, then irr୲ > 8. If n = 6, then the degree sequence of G can 
be one of the following cases: (4,4,4,4,4,2), (4,4,4,4,2,2), (4,4,4,2,2,2), (4,4,2,2,2,2), and 
(4,2,2,2,2,2). By a simple calculation, one can easily see that in these cases, irr୲(G) > 8. 
If n = 5, then the degree sequence of G may be either (4,4,2,2,2) or (4,2,2,2,2). Note that 
the cases (4,4,4,4,2) and (4,4,4,2,2) do not occur. Also, the total irregularity of graph G 
with degree sequence (4,4,2,2,2) is equal to 12 and with degree sequence  (4,2,2,2,2) is 
equal to 8. Additionally, the graph G with  degree sequence  (4,2,2,2,2) is the bicyclic 
graph ∞(3,3,1). Clearly, regular graphs Cଷ and Cସ are the only Eulerian graphs with 3 
and 4 vertices, which have total irregularity 0.                                                            □ 

Theorem 3.3. Let ܩ ≇ ∞(3,3,1) be a connected non-regular   Eulerian graph of order  ݊, 
then ݅ݎݎ௧(ܩ) ≥ 10, and the equality holds if and only if ܩ ≅ ∞(4,3,1) or ܪ, where graphs 
∞(4,3,1) and ܪ are shown in Figure 3. 

  
∞(4,3,1) H 

Figure 3. Eulerian graphs with the third minimum total irregularity. 
 

Proof. By Lemma 3.1, if n ≥ 8 then irr୲ > 10. If n = 7, then the degree sequence of G 
may be the following cases: 

(6,6,6,6,6,6,4), (6,6,6,6,6,6,2), (6,6,6,6,6,4,4), (6,6,6,6,6,4,2), (6,6,6,6,6,2,2), 
(6,6,6,6,4,4,4), (6,6,6,6,4,4,2), (6,6,6,6,4,2,2), (6,6,6,6,2,2,2), (6,6,6,4,4,4,4), 
(6,6,6,4,4,4,2), (6,6,6,4,4,2,2), (6,6,6,4,2,2,2), (6,6,6,2,2,2,2), (6,6,4,4,4,4,4), 
(6,6,4,4,4,4,2), (6,6,4,4,4,2,2), (6,6,4,4,2,2,2), (6,6,4,2,2,2,2), (6,6,2,2,2,2,2), 
(6,4,4,4,4,4,4), (6,4,4,4,4,4,2), (6,4,4,4,4,2,2), (6,4,4,4,2,2,2), (6,4,4,2,2,2,2), 
(6,4,2,2,2,2,2), (6,2,2,2,2,2,2), (4,4,4,4,4,4,2), (4,4,4,4,4,2,2), (4,4,4,4,2,2,2), 

(4,4,4,2,2,2,2), (4,4,2,2,2,2,2), (4,2,2,2,2,2,2). 

   CସCଷ 

CଷCଷ 
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By a simple calculation, one can easily see that in these cases, irr୲(G) > 10. If 
n = 6, then the degree sequence of G can be the following cases: 

   (4,4,4,4,4,2), (4,4,4,4,2,2), (4,4,4,2,2,2), (4,4,2,2,2,2), (4,2,2,2,2,2). 
The total irregularity of graph G with degree sequence (4,4,4,4,4,2) or (4,2,2,2,2,2) is 
equal to 10 and with the other degree sequences is more than 10. Note that if (4,4,4,4,4,2) 
is degree sequence of graph G, then G ≅ H, and if (4,2,2,2,2,2) is degree sequence of 
graph G, then G ≅ ∞(4,3,1). Finally, if n ≤ 5, then by  referring to the proof of Theorem 
3.2, we see that the total irregularity value of G is not equal to 10.                                      □ 

Corollary 3.4. The second and third minimum value of the total irregularity of Eulerian 
graphs are 8 and 10, respectively. 
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