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In this paper an alternative model allowing the extension 
of the Debye-Hückel Theory (DHT) considering time 
dependence explicitly is presented. From the Electro-
Quasistatic approach (EQS) introduced in earlier studies 
time dependent potentials are suitable to describe several 
phenomena especially conducting media as well as the 
behaviour of charged particles (ions) in electrolytes. This 
leads to a reformulation of the meaning of the nonlinear 
Poisson-Boltzmann Equation (PBE). If a concentration 
and/or flux gradient of particles is considered the 
original structure of the PBE will be modified leading to 
a nonlinear partial differential equation (nPDE) of the 
third order. It is shown how one can derive classes of 
solutions for the potential function analytically by 
application of pure algebraic steps. The benefit of the 
mathematical tools used here is the fact that closed-form 
solutions can be calculated and thus, numerical methods 
are not necessary. The important outcome of the present 
study is meaningful twofold: (i) The model equation 
allows the description of time dependent problems in the 
theory of ions, and (ii) the mathematical procedure can 
be used to derive classes of solutions of arbitrary nPDEs, 
especially those of higher order. 
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1 INTRODUCTION 

Many problems of physical/chemical interest are described by nPDEs with 
appropriate side conditions. These can be suitable chosen initial and/or boundary 
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conditions. If the equations are linear, widely used methods for solving PDEs are 
known (e.g. the Fourier and/or Green’s method) and the superposition principle 
generates further solutions by known of a pair of solutions. For nPDEs, however, 
the linear superposition principle can not be applied to generate new classes of 
solutions. 

Note: We stress the existence of a nonlinear superposition principle known 
as the Bäcklund transformation which means a special contact 
transformation [1]. The nPDE under consideration is not of Painlevé type, 
e.g. [2], [3], [4] and therefore a suitable Bäcklund system can not be 
associated. Apart from this a Bäcklund system is only (in the most cases) 
derivable for ‘simple strutured’ nPDEs. Thus this fact justifies the use of 
algebraic methods for deriving analytical solutions and often represents the 
only suitable way for a successful solution procedure.  
Because most of the of solution methods for linear equations fail, there is 

no general method of finding analytical classes of solutions for nPDEs and 
numerical techniques are usually required. Sometimes special transformations can 
be done to transform a nPDE into a linear PDE, or some other ‘ad hoc’ methods 
(and/or assumptions) can be used to derive classes of solutions of a particular 
nonlinear equation. 

Note: We arrange that we suppress the item ‘classes of solutions’, so we 
will simply understood ‘solutions’ instead of classes of solutions (although 
classes of solutions is the correct notation). Since time occurs in the 
derivation(s) explicitly such types of nPDEs are called evolution equations 
(EVEs) since they allow the study of time-dependent processes. Any nPDE 
may not have the outer form ݑ௧ = ௫ݑ,ݑ]ܭ , ௫௫ݑ , … ] necessarily being an 
EVE where  ݑ௧ = ,ݑ]ܭ ௫ݑ ௫௫ݑ, , … ] is a nonlinear operator in general. 
Equations containing mixed higher derivations like ݑ௫௧ =   and/or [ݑ]ܭ
௫௫௧ݑ =  .are also called EVEs [ݑ]ܭ

Techniques of finding solutions represent only one aspect in dealing with nPDEs. 
Like linear equations, questions of existence, uniqueness, and stability of solutions 
are also of fundamental importance. 
 
1.1. HISTORICAL DEVELOPMENTS – A SHORT OVERVIEW 

There is a good historical reason to deal the subject. When the developments of 
interfacial electrochemistry along modern lines became restricted by the over 
thermodynamics attitude of its adherents in the pre-1950 days, much attention was 
diverted to what had seemed  previously to some extent the accompanying  side 
issues, i.e. the physical chemistry of the bulk solution adjoining the double layer. 
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This had concentrated upon an interest in the deviations in the behaviour of 
solutions from laws derived upon the assumption that interactions between 
particles are negligible. The properties of electrolyte solutions can significantly 
deviate from the laws used to derive the chemical potential of solutions. In non-
electrolyte solutions the intermolecular forces are mostly comprised of weak Van 
der Waals interactions, which have a ∝  ଻ dependence (in principle), and forିݎ
practical purposes this can be considered as ideal. In ionic solutions, however, 
there are significant electrostatic interactions between solute-solvent as well as 
solute-solute molecules. These electrostatic forces are governed by Coulomb's law 
which has a ∝  ଻ dependence. Consequently, the behaviour of an electrolyteିݎ
solution deviates considerably from that an ideal solution. Thus the DHT of such 
interactions attracted the attention of electrochemists away from the blocked 
interface studies [5]. The DHT was proposed as a theoretical explanation for 
departures from ideality in solutions of electrolytes [6]. From about 1920 to 1950 
the majority of research  in this domain were occupied with determining activity 
coefficients of salts in dilute aqueous solutions, the electrical conductance of 
molten salts, or electrostatic effects of the dissociation constant of acids or bases in 
aqueous solutions [7], [8]. Note that by applying the DHT restrictions have taken 
into account, like much diluted solutions, completely dissociation and more [9]. 
Contemporaneously, Helmholtz considered a double-layer model wherein he 
proposed a simple charge separation at the interface [10].  

Gouy [11], [12] developed an electric double-layer model that includes the 
effects both of the electric potential and ionic concentration with the aid of the 
Boltzmann distribution [7], [9].  

A further contribution was done by Chapman [13]. He established the 
steady-state governing equation for the diffuse layer, the Poisson-Boltzmann 
Equation [11]. This equation is based upon the combination of the electrostatic 
basic equation, the Poisson Equation [14], and the Boltzmann distribution [15]. 
The model is referred to as the Gouy-Chapman model.  

Further, Stern [16] improved the Gouy-Chapman model by assuming a 
finite ion size and by dividing the electrolyte into two layers, specified to as the 
Stern layer and the diffuse layer. Later on Grahame [17] revised the Stern model 
using three layers: The Inner Helmholtz layer (IHL), the Outer Helmholtz layer 
(OHL) and the diffuse layer. The difference between the Grahame model and the 
Stern model is due to the existence of a specific adsorption [11].  

A transient version [11] is referred to as the Nernst-Planck-Poisson-
modified Stern model or simply the Nernst-Planck-Poisson model (NPP) if there is 
no modified Stern layer.  
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During the past 90 decades several well-known scientists did their 
contributions in this domain, and, unfortunately only a small number are 
mentioned here like Bjerrum [18], Gronwall/La Mer/Sandved [19], Onsager [20], 
Kirkwood [21], Falkenhagen [6], [9], Ghosh [22], Smoluchowski [23], Parker [24], 
Walden [25], Planck [26], Fuoss [27], Kortüm [28], [29], and extensive 
developments are not finalized up to now. 
 
1.2. ELECTROMAGNETICS FROM A QUASISTATIC PERSPECTIVE 

The general theoretical considerations can be found in [30−32]. Here only the 
essentials are cited.  

The quasistatic limit of the Maxwell Equations (MEs) is a kind of c  
limit (the fields propagate at once) obtained by neglecting time retardation. EQS 
has important applications modelling transient phenomena in approximating 
theories for materials with low conductivity (or the low-frequency approximation). 
The crucial step is the fact that a time dependent electric field may derived from a 
scalar potential which is, in our case the solution of a certain nPDE of the third 
order [33−37]. General transient electrodynamical problems are not easy to solve, 
e.g. by occurring solutions depending upon roots one has to take into account 
branch points. In media with a finite conductivity a static field is not possible and 
the pertinent relaxations time is given by ߬ = ଵ [38], where ିߪߝ଴ߝ  is the relative 
permittivity (of the material) and   is the conductivity. For the most metals (e.g. 
copper) the relaxation time is in the range of 10ିଵ଼s. New developments in 
material sciences produce materials with a relative dielectric constant in the range 
of 42   and a conductivity of about 10ିଽି݉ݏଵ. Then the decay rate is 
approximately ߬ ≈ 10ିଷs and this is long compared to other time constants of the 
system (e.g. if an electromagnetic field passes through a panel).  

This is exactly the case where EQS can be applied [32], [38] and only pure 
capacitive effects are of interest. In further studies considering both capacitive and 
inductive effects the Darwin model will be used. Note that statics is just a 
particular case of the general MEs but quasistatics works as an approximation. 

                                             
1.3. THE MODEL EQUATION UNDER CONSIDERATION 

The starting point is an expanded version of the PBE, a special nPDE of the third 
order 
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where F is the Faraday constant, D the diffusion constant and k is the Boltzmann 
constant.  

One assumes the conversion: Let ௜ܰ
଴ × 1000 = ஺ܰܿ௜ , ܿ௜ is the molar 

concentration and the ion strength is defined by ܫ = 1/2∑ ܿ௜ݖ௜ଶ.௜  Introducing 
further per definition 
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one derives a third-order nPDE for the time-dependent potential function 
),( txuu  : 
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At this stage one formally imposes boundary conditions (BCs) so that 
lim௫→ஶ ଴ݑ = ௅ and lim௫→ஶݑ

ௗ௨
ௗ௫

= 0 holds; they are necessary conditions later for 
the function u = u(x,t). Note that BCs may depend upon actual problems. We find 
it useful to split up the potential so that u0 is the potential at any surfaces and uL is 
the potential in the electrolyte far away from a reference ion, thus u = u0 − uL (not 
to be changed with the Laplacian). 

One seek solutions for the nPDE, Equation (3) for which u = F(x,t), F  
C3(D), D  R2 is an open set and  

 .....,0,0,0:~),(:  tx uuuDtxuD  

is excluded with t > 0. Suitable solutions are u  I, I an interval so that I  D and 
2: RIu  . It is not an easy task to solve nPDEs (especially of higher order) 

exactly but here we wish to solve the Equation (3) analytically by using algebraic 
methods without numeric’s. A mean value for the charge density is used in 
Equation (3) and one-valued ions are assumed so that zi = z = 1. In later 
considerations the case of many-valued ions will be considered. The potential 
function utxu ),(  represents the ion’s potential surrounded by the ‘ion cloud’. In 
further meaning this function describes the time-dependent potential of an arbitrary 
metal electrode dipping in an (liquid) electrolyte (due to the restrictions imposed 
by EQS not all metals can be considered). Note that a standard concentration of c= 
0,01mol/l, resp. ci for the concentration of the i-th ion at a standard temperature of 
T = 293,15 K is assumed. In the following we shortly present the basics. 
 
1.4. THE ALGEBRAIC SOLUTION PROCEDURE 

Consider a given nPDE in its two independent variables x  and  t  
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Firstly the nPDE converts into a nODE by using a frame of reference 
)(),(  ftxu , where tx  ;   and   are constants to be determined. Thus 

one has 

  0....,)('',)(',)(  fffQ .                                                 (b) 

The next step is that the solutions we are looking for can be expressed in terms of a 
finite series representation such that 
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holds where ),( kcn   means the cosine amplitude and k  is the modulus. The 
parameter n in Equation (c) is found by balancing the highest derivative with the 
nonlinear terms in the reduced nODE Equation (b). This parameter must be a 
positive integer since it represents the number of terms in the series (c). In the case 
of fractions one can take suitable transformations as shown later. The substitution 
of Equation (c) into the relevant nODE Equation (b) will yield a system of 
nonlinear algebraic equations with respect to the unknowns 0a , 1a  , …. , k ,   and 
 .  
 
2.  CALCULATION OF SOLUTIONS 

We convert the Eq. (3) by )(),(  ftxu , tx    to derive the nODE of the 
third-order 
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Note: The similarity transformation is called the travelling wave reduction 
describing any wave propagation and   means the velocity. One of the new 
aspects here is the introduction of the quantity to generalize the method. 

  

We seek for solutions for which )(Ff  , 3RF   and 2RD   is an open 
set excluding  

 0,0)(:~),(:  tfDfD  . 



An Algebraic Calculation Method for Describing Time−Dependent Processes     83 

 

Suitable solutions are If  , I an interval so that DI   and 2: RIf  . 
Since the l.h.s of Equation (4) is a continuous function we ensure at least existence 
locally and due to the lemmas from Peano and Picard-Lindelöf we assume 
uniqueness (also at least locally) in a given domain. 

The question now is: Can we integrate the nODE Equation (4) directly so 
that we can rewrite the nODE (4) in a complete differential form? Indeed, one has 
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Integrating once with 1c  as an arbitrary constant of integration gives a second-
order nODE  
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Then the transformation )]([ln/1)(  wf  will remove the exponential function 
yielding a further second-order nODE for the new dependent variable )(w : 
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To apply the algorithm performed in Section 1(d) above it is necessary to 
know the quantity n  in the series Equation (c). It can be shown that two values 
exist: 11 n  and 22 n .  

This is not possible since this quantity must be Zn . Introducing a new 
variable )(p  by the transformations 1

1 )()(  pw and 2
2 )()(  pw  will give 

two second-order nODEs (balancing now leads to 11 n  and 22 n )  for the 
function )(p : 
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 Thus, from the Equation (c) the following solutions for the functions )(p  
are possible: 

),()( 101 kcnaap   , for 1n                                            (8a) 

),(),()( 2
2102 kcnakcnaap   , for 2n                     (8b) 
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 Putting together the Equations (c), (8a), (8b) into the nODEs (7a), (7b) two 
systems of nonlinear algebraic equations appear. For control purposes we only 
stress the first and the last equation. 
1st case, 1n : 
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 Solving these systems the following solutions are possible (the trivial 
solution is always a solution but meaningless for our purposes; the constants   
and   are predetermined quantities and should not work as unknowns): 
1st case: 
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An interesting role plays the constant 1c : It relates the parameters   and   
in the similarity variable   if one sets 11 c  and thus we exclude 01 c  in the 
Equation (6). By using the Equations (8a) to (10c) one derives the following 
expressions for the functions )(f  and therefore for the functions ),( txu : 
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Note: To derive this solutions the basic properties of the elliptic functions 
(and the logarithm) was used, especially the relation for the modulus

1'22  kk , the Jacobi’s real transformation for negative modulus and the 
transformation for imaginary arguments, e.g. [39]. Thus, for example, one 
has the relation ),(:),(  cdkucn  for the cosine amplitude. Elliptic 
functions with the special modulus 2/1k , e.g. in case of the function )(4 f

are sometimes called lemniscate functions. For the following discussions it 
is only necessary to consider the functions in the form )(if , 4,...,1i . For 
the constant   we have ିߟଵ =  ଵ and this is materialିܥܬ0,0253
independent. We assume the following domains of definition:

  1)(),(1  ucnusn , 1)('  udnk  and  )(utn . 
 
3.  SOME SPECIAL PROPERTIES    

In all cases a travelling character is observed, but for all functions the argument of 
the logarithm may not be the unity, since in this case the solutions take infinity or 
become a singularity, apart from that the expressions have singularities if the 
denominators take zero. All functions are continuously and differentiable at least 
two-fold in the domain 0 <  < 1, the first, the second and all higher derivatives 
exist and have the same behaviors as above. Some special values are summarized 
in the following table.    

Now we are interested in further quantities. We assume an electrical field

iE


 and this field will be generated by a given charge distribution. Such an electric 
field can then be derived from the potential by application of the gradient operator

)( ii fE


 to give the following expressions and without loss of generality one 

can also set 121  aa ; the modulus are given by the Equations (11) to (11c): 
 

   kdcksnE ,,1)(1 





,  7546,1 ,                                            (12) 
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   
 3

1

3
1

3
1

2
,33

24
23

,33,3331)(







dn

sncn
E


,                                            (12a) 

     3
2

3
2

3 ,,
3

132
)( 




 asdacnE


,   13
2
1

a ,               (12b) 

     
 kcn

ksnkdnkcnE
,3

,,,21)( 24








.                                               (12c) 

 

)(if  0|)( if  1|)( if  0|)( if  1|)( if  )(
0

lim 


if  )(
1

lim 


if  

)(1 f  0 1,2182 1 1,9993 0 0,5423 

)(2 f  0 0,0005 0 -0,0041 -0,6826 -0,5853 

)(3 f  0 0,2073 0,2440 0,1394 0 0,1126 

)(4 f  0 0,2348 0,5 -0,1301 -1,3863 -1,2105 

 

Table 1. Some selected properties of the functions Equation (11) to Equation 
(11c), here 121  aa  is considered, 4,...,1i . 
 

Note: We stress that the first expression is not defined at those points 
where the denominator vanishes, e.g. at the points as 0),(  kcn . This is 
equivalent with the task to look for solutions of the equation 0),(  kcn . 
The first real zero is given explicitly and the same is true for the remaining 
denominators.  

 

Now we show that the fields have a conservative character since by 
considering Cartesian coordinates, e.g. ),,( zyx   the relation 0)( iErot


 

holds (the field is irrotational or equivalently, the existence of the potential is 
secured since the curl of the field vanishes).  

To show that the fields are really solenoidal one introduces Cartesian 
coordinates in the Equations (12) to (12c) so that ),,()( zyxi EEEE 


. Here also 

121  aa  is assumed and we suppress the factor 1  and dropping all 
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arguments. The calculation is performed only for the first component )(1 E


, the 
remaining are similar. With a unit vector ie  one has:  

yx

yx
z

zx

zx
y

zy

zy
x

zyx

zyx

zyx

EE
e

EE
e

EE
e

EEE

eee
EErot















11 .   (13) 

Now it follows that 

0...
),(

),(),(
),(

),(),(
,1 



















kycn
kydnkysn

kzcn
kzdnkzsnErot zyx


, 0,0  yx ,  

                                                                                             0z                     (13a) 
 
All the individual terms disappear and therefore the rotation is zero and 

thus the field is solenoidal.  
To derive the charge density one has to apply the divergence operator upon 

the electric field (   acts as a local coordinate once again) so that 

)()4/(1)(  ii E


.This yields complicate expressions with elliptic functions; 
one can assume these as a kind of superposition. One has: 

        ktnkdnksnkkdn ,,,,
4

1)( 22222
1 


 ,                                (14) 

 

    
 

   
  ,

),(12138
,4),(12138),(

),(12138
,),(12138,),(27

)(

2

22
2

kdn
ksnkdnkdn

kdn
kcnkdnksnkdn









                       (14a) 

 
     

    ,13
2
1,,

8
1

12
1

,
3

1,113
12
1)(

2

22
3






























akasd

kacdkasn
                               (14b) 

  
     

               .,3,2,3,,,2

,,,6
,34

1)(

222222

422
22

4

ksnkdnksnkcnksnkdn

kcnksnkdn
kcn








     (14c) 
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Let a  be a specific distance e.g. from the electrode surface to the centre of the 
(hydrated) ion in the OHL. The total charge totiq ,  contained in the OHL is 

obtained by integrating the charge densities )(i  from the electrode surface with 
the reference point taken at infinity. Therefore one has to integrate once the 
expressions for the charge densities given in the Equations (14) to (14c). For the 
first density )(1   one has: 

























a a a a

tot dktnkdndksnkdkdndq ),(),(),(),(
4

1)( 22222
1,1 . 

(15) 
 

The first and the second integration can be done exactly but the third term 
causes troubles and can be handled only numerically. This is a standard procedure 
for any numerical integration processes and will not be performed here. An 
alternative way is, since all the elliptic functions are continuous functions to 
consider known series representations by changing integration and sums. 
Otherwise the Weierstrass expansions [40], [41] of the involved elliptic functions 
can be made. This reflects, among other things, the immense difficulties in dealing 
such problems (convergence of the considered integrals is assumed). To reach the 
goal faster we suggest another possibility: Determining the first and the second 
integrals exactly and signing the last term by 





aa

dkRdktnkdn  ),(),(),( 22 . 

Then, integrating once, one has, in principle 

  
   

    
 

    
   

  ,,
,1,

,,,

,1

,,,

,1,

,,
4

1

2

22

22.1































a

tot

CdkR
kasnkkadn

kkaamEkasnk

kasnk

kkaamEkadn

kasnkkadn

kkaamEkkaq

        (15a) 

in which (.,.)E  is the elliptic integral of the second kind and (.,.)am  is the 
Jacobian amplitude. Taking the limit of each term, that is 0a  the terms 
approaches to zero except the third. This guarantees charge conservation so that 
charge cannot disappears anywhere. Here it is amplified how fast mathematical 
problems can grow up making problems unsolvable (at least analytically). In 
Equation (15a) the special case 1k  yields:  
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  







a

tot dagdEaaq 


)(tanh
4

1,)(coth2 2
,1 ,                                 (15b) 

in which the argument of the elliptic integral of the second order the Guderman 

function (or hyperbolic amplitude) occurs defined by   )(:arctan22 agdea  . In 

principle one also can consider the case 0k  which gives a linear connection 
explicitly  





a

tot daq 


)(tan
4

2
,1 .                                                                  (15c) 

 However one should bear in mind that the first, the second and the fourth 
term vanishes leading to the fact that essential contributions to the charge density 
could be lost. In fact, the expressions (15b) and (15c) represent the classical result 
known from electrostatics. For comparative purposes we show a graphical 
representation of these functions in Figure 6 (remember that  )0,(E  and 

 sin)1,(E ). 
 

Note: It is possible to handle the expression ),( kR   such that one assumes 
also special values for the modulus, e.g. 1,0k . Then the elliptic functions 
degenerate to the usual circular and hyperbolic functions, resp., leading to 
integrals of the general form  





a

duuuR )(tan)0,( 2  and 



a

duuuR )(tanh)1,( 2 . 

However one has to specify appropriate conditions to handle the 
divergence of these integrals. Otherwise an anti derivative of ),( kR  exists 
in general and one has the expression 

   CktnkdnEdktnkdndkR ),(),()(2),(),(),( 22
. 

If necessary one can make use of the formula for the double 
argument, in detail  

 222 )2(1/(()2(1(),(),(  cncnktnkdn . 

For the Gudermann function one has 2)(arctan2)(  xexgd . To 
prove this one has to show that both sides of the last relation vanishes as 

0x . Left side: 0)0arctan())0h(arctan(sin)0( gd , right side: 

.02212)arctan(2 24
0  e  
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As a last remark we stress the possibility to express the cosine amplitude by 
theta- and sigma-functions; to give an example the solution Equation (11) reads, 
once again with 11 a  as 

 
 
 

 
  




























k
k

k
k

kcn
f 'ln

2
1

,
,ln1

,
1ln1)(

4

2

1

3
1 







 .                      (16) 

 
Note: We want to show up here different ways to express solutions, the 
user can then apply a preferred representation. It is also possible to express 
these solutions in terms of the Weierstrassian -function. Thus one has, in 
principle, the relation  

),()(),;( 31
2

31332 keeunseeeggu   

where u  means a general argument of the ns-function, 32 , gg  are the 

invariants of the -function and 1e  and 3e  are the roots of the equation 

04 32
3  gtgt which are all different. To complete, the modulus of the 

ns-function is expressed by )/()( 3132
2 eeeek   for known values of the 

ie .The involved functions are meromorphic and double-periodic, the i  

are odd and entire functions; the i  are even and entire. To clarify the 

relationship we present the connection between 1  and 1 , one has in 

detail    vuCu  2
1

1
2

11 )2/()(exp)( , [39], [46]. Also one has to take 

care the regularity of the arguments of the logarithm. 
 
4.  A NUMERICAL STATEMENT – PRACTICAL FUNCTION SERIES 

              REPRESENTATIONS  

 

For fast numerical calculations it is convenient to have series representations, 
therefore we calculate some ascending power series formulas for the solution 
functions Equation (11) to Equation (11c). The functions, derived from the 
transformation of the log-function are valid up to the given order valid at 0 :  

 108642
1 ....
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)31223(
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 Of ,   (17a) 
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
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 8642
4 ...

960
23

32
3

4
14ln)( 











 Of .                                       (17c) 

 
Note: Consider the first function series f1(), where the necessary condition 
limక→଴ ௜݂(ߦ) = 0 holds. The terms thus form a sequence of zeros and also 
for the function f3(). Since the function f1() is continuous (at least in the 
considered domain), the sum function is also a continuous function. In 
principle one has series of the general form fi() = a2 + b4 + c6 + ... = 
dn. Although the terms form a null sequence, such series are divergent. 
For practical calculations, only the first terms (row fractionation after the 
quadratic term) are important. The series f2() and f4() are divergent 
anyway since they do not form a null sequence. If one needs series for great 
arguments, asymptotic formulas are necessary. But here one has to be 
careful because the limit   does not exist. By using asymptotic series 
the divergence does not play any role. 

 
Similar formulas can also be derived for the electric fields and charge 

densities (the convergence should be checked by appropriate methods). Another 
useful series representation in terms of circular functions (in the sense of a Fourier 
series) is given by the following formula; we only present the first function f1(), 
Equation (11), similar expressions could be obtained for the remaining: 
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                 (18) 

where  KKq /'exp   and K , 'K  are the complete elliptic integrals )(kKK  . 
Here the expansion is valid in every strip of the form  ln2/1)2/(Im K  

with   as a parameter with positive imaginary part [39,40].  
From the Table 1, it is seen that the limiting values limక→଴ ௜݂(ߦ) vanish for 

the functions f1() and f3(), the functions f2() and f4() remain finite and real. 
Otherwise taking limక→ஶ ௜݂(ߦ) it is seen that these limits do not exist. From this 
standpoint one can say that these functions are not stable in the sense of the 
stability of solutions which require that the function(s) must vanish as   
(thus the limits must exist). This might cause troubles in quantum-mechanical 
considerations in which the potential functions must “behave well” but such types 
of functions are known and can be used by suitable assumptions (no square 
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integrability). Also for a fast overview one can solve the Equations (7a) and (7b) in 
terms of a power series representation; here we give formulas valid up to order two 
with arbitrary coefficients 0ia  and 11  c . Due to the similar structure 
of these nODEs the series hardly differ; and one gets, for the eq.(7a) 

  32
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23

0101 ][212
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aaaaaap 
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 ,                   (19) 

and similar for the Equation (7b) 
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
 .                     (19a) 

 

5. SUMMARY – BENEFITS AND DISADVANTAGES – OPEN PROBLEMS 

I. Transient electrodynamical (and electrochemical) problems are notoriously 
difficult to solve (in the general case one needs Green’s tensors and/or 
vector potentials) and uniqueness is not always given (solutions depending 
upon roots are involved so that branch cuts must be taken into account). 

 

II. In this study we showed that a nPDE, the Equation (1) which has the 
meaning of a modified Poisson-Boltzmann Equation can be solved 
analytically by application of pure algebraic steps. The highly nonlinear 
equation was introduced by the author recently [33] to describe time 
depending electrochemical processes and/or charge transfer upon 
electrodes. 

 
III. We applied an algebraic approach containing elliptic functions explicitly. It 

is remarkable that classes of solutions derived by this special method differ 
completely from solutions of the DHT in their behaviour. It is a special 
hallmark of algebraic methods that one cannot predict appropriate solutions 
in the sense of the solubility of the nonlinear algebraic system of 
polynomial equations. Several other approaches are used but none of them 
leads to useful results.  

 
IV. The success and/or failure strongly depends upon the solubility of the 

nonlinear algebraic system. Due to the experience of the author such 
systems are often over determined and the number of equations ne is greater 
than the number of unknowns nu. The ideal case is therefore ne = nu and by 
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skillful considerations in combination with the physical reality the outer 
form of the nonlinear algebraic system can be controlled. Thus we expand 
the original similarity variable tx   to tx  .  The purpose of 
the similarity variable is twofold: It reduces a given nPDE to a nODE – this 
always works, and, if one seeks for, due to the physical situation, a 
traveling wave solution. One cannot, in general predict the solution 
manifold; that means that by use of the traveling wave reduction one has no 
guarantee to generate a traveling motion. In each case one has at least to 
check whether the solution represents a traveling wave motion or not. 

 
V. A further important fact is given by the integration constant c1 in the 

Equations (7a) and (7b), respectively. Only in the context of soliton theory 
one can set ci = 0 (in view of a localized wave). Generally it is not allowed 
to set it zero as happen in several papers. Otherwise an interesting feature 
can be observed here: The constant c1 relates the parameters   and  . 

 
VI. The difference of the method used here to other algebraic methods is 

enormous. Most algebraic methods are based upon the fact that the 
unknown solution function satisfies a nODE of the first order [42], [43], 
[44], and [45] to mention some examples. Thus the name of the (algebraic) 
method comes from the used nODE, e.g. the hyperbolic tangent method 
(including the Riccati Equation as the cornerstone), the exponential 
transform method, the Weierstrass transform method, the Lambert function 
transform method and so on. Here, in our analysis the unknown solution 
function (the cosine amplitude function, Equation (c) and its derivatives 
can be used independently from any nODEs. Of course, the function and 
their derivatives have to satisfy general mathematical properties such like 
continuity, differentiability and existence in a given domain. 

 

Note: For all scientists and engineers who are dealing with elliptic 
functions we recommend the excellent formula collection from Byrd and 
Friedmann, [46]. This attractive and unique treatment as well as the 
classical Abramowitz/Stegun [39] should be a standard equipment for all 
mathematical considerations. 

 

VII. In fact, the algorithm works efficiently and solutions of the highly nPDE, 
the Equation (1) and the Equation (3) respectively can be derived without 
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any problems. Problems may appear by further using of the solution 
functions, e.g. the analytic determination of the total charge, the Equation 
(15). Here only a numerical procedure is possible. Also the solution 
procedure of the nonlinear algebraic system, the Equations (9) and (9a), 
respectively may cause troubles. If one is interested in dealing higher order 
nPDEs, the degree of the system will increase rapidly and long computing 
time is expected. Due to the experience of the author many of such systems 
are satisfied only by the trivial solution and the algebraic solution process 
will fail. 

 

VIII. In the present analysis the EQS approximation was used and no magnetic 
effect were considered. To handle this case a further extensions will be 
done in future. Another aspect is the fact that the particles involved have 
quantum-like properties and another theory is necessary. Thus a quantum 
mechanical approach will be considered as a next task. 

 
 

 
 
Figure 1. The solution function )(1 f , Equation (11), left and the solution function 

)(2 f , Equation (11a), right. Both functions show a travelling character. The 
graphs are generated by using the constant 11 a . The influence of the constant 

0253,01  (numerically) is such that it shifts the graphs upon the vertical axis 
and this true for all further graphics. 
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Figure 2. The solution function )(3 f , Equation (11b), left and the solution 
function )(4 f , Equation (11c), right. Also both functions show a travelling 
character. The functions are generated by using the constant 11 a  and 12 a . 
 

 
Figure 3.  A planar sketch of the charge densities )(1  , left and )(4  , right. 
Here, also 121  aa  was used. The functions show periodic behaviour once 
again. The periodic peaks left may be interpreted as a charge distribution near a 
charged particle (e.g. analogously in a crystal lattice). 
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Figure 4. A three-dimensional plot of the functions ),(4 txu , left and ),(3 txu  
right. The functions have the modulus 2

1k  and  3
2k  respectively and the 

values 1  were used. 

Figure 5. A graphical representation of the function Equation (11) in the principal 
form  ),(ln kcn   with the modulus 3660,0k  and for 4/0   left and 

2/0   right without the influence of the constant  . One can see the poles in 
the given domain surrounded by symmetrical ‘field line distribution’. 
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Figure 6. A planar sketch of the charge densities, the Equations (15b) left and 
(15c) right without the integral contributions. If one interprets the distance "a" as 
the seat of a charge generating size, then, on both sides of a charge accumulation is 
lockable). In this model the central ion is thought to be located in the centre. The 
increasing (decreasing) part up to the maximum (minimum) matches domains of 
higher concentrated charged areas.  
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