# The First Geometric-Arithmetic Index of Some Nanostar Dendrimers 

Ali Madanshekaf and Marjan Moradi<br>(Communicated by Ali ReZa Ashrafi)<br>Department of Mathematics, Faculty of Sciences, Semnan University, Semnan, Iran


#### Abstract

Dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core [1, 4]. These are key molecules in nanotechnology and can be put to good use. In this article, we compute the first geometric-arithmetic index of two infinite classes of dendrimers.


Keywords: nanostar dendrimer, the first geometric-arithmetic index.

## 1. Introduction

Investigations of topological indices based on end-vertex degrees of edges have been conducted over 35 years. One of them is the first geometric-arithmetic index $\left(G A_{1}\right)$. The $\left(G A_{1}\right)$ index defined as:

$$
G A_{1}(G)=\sum_{u v \in E(G)} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}
$$

has been introduced less that a year ago [2, 3, 5]. Here $d_{u}$ denotes degree of vertex $u$ and so on.

Dendrimer is a synthetic 3-dimentional macromolecule that is prepared in a stepwise fashion from simple branched monomer units. The nanostar dendrimer is a part of a new group of macromolecules that appear to photon funnels just like artificial antennas. In this article many attempt have been made to compute the first geometric-arithmetic index for two types of nanostar dendrimers.

[^0]
## 2. Results and Discussion

Lemma 1. Consider the complete graph $K_{n}$ of order $n$. The first geometric-arithmetic index of this graph is computed as follow:

$$
G A_{1}\left(K_{n}\right)=\frac{1}{2} n(n-1) .
$$

Proof. The degree of all the vertices of a complete graph of order $n$ is $n-1$ and the number of edges for $K_{n}$ is equal $\frac{1}{2} n(n-1)$, Thus

$$
G A_{1}\left(K_{n}\right)=\sum_{u v \in E\left(K_{n}\right)} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}=\frac{1}{2} n(n-1) \frac{\sqrt{(n-1)^{2}}}{\frac{1}{2} 2(n-1)}=\frac{1}{2} n(n-1) .
$$

Lemma 2. If $G$ is a regular graph of degree $r>0$, then

$$
G A_{1}(G)=\frac{n r}{2} .
$$

Proof. A regular graph $G$ on $n$ vertices, having degree $r$, possesses $\frac{n r}{2}$ edges, thus

$$
G A_{1}(G)=\sum_{u v \in E(G)} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}=\frac{n r}{2} \frac{\sqrt{r^{2}}}{\frac{1}{2} 2(r+r)}=\frac{n r}{2} .
$$

Lemma 3. Let $\mathrm{S}_{\mathrm{n}}$ be a star on $n+1$ vertices (Figure 1), then

$$
G A_{1}\left(S_{n}\right)=\frac{2 n \sqrt{n}}{n+1}
$$

Proof. It is easily seen that there are $n$ vertices of degree 1 and a vertex of degree $n$. Therefore,

$$
G A_{1}\left(S_{n}\right)=\sum_{u v \in E\left(K_{n}\right)} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}=\frac{2 n \sqrt{n}}{n+1} .
$$



Figure 1. Star graph with $n+1$ vertices.

### 2.1 The First Geometric-arithmetic Index of the First Class of Nanostar Dendrimers

Consider a graph $G$ on $n$ vertices, where $n \geq 2$. The maximum possible vertex degree in such a graph is $n-1$. Suppose $d_{i j}$ denote the number of edges of $G$ connecting vertices of degrees $i$ and $j$. Clearly, $d_{i j}=d_{j i}$. We now consider two infinite classes $N S_{1}[n]$ and $N S_{2}[n]$ of nanostar dendrimers, Figures 2 and 3. The aim is to compute the first geometric-arithmetic index for two of these nanostar dendrimers.

We consider the molecular graph of $K(n)=N S_{1}[n]$ with four similar branches and three extra edges, where $n$ is steps of growth in this type of dendrimer nanostars (Figure 2). Define $d_{23}$ to be the number of edges connecting a vertex of degree 2 with a vertex of degree $3, d_{13}$ to be the number of edges connecting a vertex of degree $l$ with a vertex of degree $3, d_{22}$ to be the number of edges connecting two vertices of degree 2 and $d_{12}$ to be the number of edges connecting a vertex of degree 1 with a vertex of degree 2 . Also $d_{i j}^{\prime}$ denote the number of edges connecting vertices of degrees i and j in each branch ( $i, j \leq 4$ ). It is obvious that $d_{12}=4 d_{22}^{\prime}+1, d_{22}=4 d_{22}^{\prime}+1, d_{13}=4, d_{13}^{\prime}$ and $d_{23}=4 d_{23}^{\prime}+2$. On the other hand a simple calculation shows that $d_{12}^{\prime}=2^{n-1}$. Therefore, $d_{12}=4 d_{12}^{\prime}=2.2^{n}$. Using a similar argument, one can see that $d_{22}^{\prime}=3(n-1)$ then $d_{22}=12.2^{n}-11, d_{13}^{\prime}=2^{n}-1$ then $d_{13}=4, d_{13}^{\prime}=4.2^{n}-4$ and finally $d_{23}^{\prime}=3\left(2^{n}-1\right)+\left(2^{n-1}-1\right)$ then $d_{23}=4 d_{23}^{\prime}+2=14.2^{n}-14$.

Theorem 4. The first geometric-arithmetic index of $K(n)=N S_{1}[n]$ is

$$
G A_{1}(K(n))=\left(\frac{4 \sqrt{2}}{3}+12+2 \sqrt{3}+\frac{28 \sqrt{6}}{5}\right) 2^{n}-\left(11+2 \sqrt{3}+\frac{28 \sqrt{6}}{5}\right) .
$$

Proof. We have $G A_{1}(K(n))=\sum_{u v \in E(K(n))} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)}$. Then

$$
\begin{aligned}
G A_{1}(K(n)) & =\left(2 \cdot 2^{n}\right) \frac{2 \sqrt{2}}{3}+\left(12 \cdot 2^{n}-11\right)+\left(4 \cdot 2^{n}-4\right) \frac{\sqrt{3}}{2}+\left(14 \cdot 2^{n}-4\right) \frac{2 \sqrt{6}}{5} \\
& =G A_{1}(K(n))=\left(\frac{4 \sqrt{2}}{3}+12+2 \sqrt{3}+\frac{28 \sqrt{6}}{5}\right) 2^{n}-\left(11+2 \sqrt{3}+\frac{28 \sqrt{6}}{5}\right) .
\end{aligned}
$$

### 2.2 The First Geometric-arithmetic Index of the Second Class of Nanostar Dendrimers

We consider the second class $H(n)=N S_{2}[n]$, where $n$ is steps of growth. Since the molecular graph of $H$ has four similar branches and five extra edges (Figure 3), $d_{12}=4 d_{12}^{\prime}$,
$d_{22}=4 d_{22}^{\prime}+3$ and $d_{23}=4 d_{23}^{\prime}+2$. By a routine calculation we have $d_{12}^{\prime}=2^{n-1}$, $d_{22}^{\prime}=2\left(2^{n}-1\right)$ and $d_{23}^{\prime}=3.2^{n-1}-2$. One can prove that $d_{12}=2^{n+1}, d_{22}+8.2^{n}-5$ and $d_{23}=6.2^{n}-6$.



Figure 2. $N S_{1}[1]$ and $N S_{1}[n]$ PAMAM Dendrimer.

Theorem 5. The first geometric-arithmetic index of $H(n)=N S_{2}[n]$ is computed as follows:

$$
G A_{1}(H(n))=\left(\frac{4 \sqrt{2}}{3}+8+\frac{12 \sqrt{6}}{5}\right) 2^{n}-\left(5+\frac{12 \sqrt{6}}{5}\right)
$$

Proof. By definition, we have:

$$
\begin{aligned}
G A_{1}(H(n)) & =\sum_{u v \in E(H(n))} \frac{\sqrt{d_{u} d_{v}}}{\frac{1}{2}\left(d_{u}+d_{v}\right)} \\
& =2^{n+1} \frac{2 \sqrt{2}}{3}+\left(8.2^{n}-5\right)+\left(6.2^{n}-6\right) \frac{2 \sqrt{6}}{5} \\
& =\left(\frac{4 \sqrt{2}}{3}+8+\frac{12 \sqrt{6}}{5}\right) 2^{n}-\left(5+\frac{12 \sqrt{6}}{5}\right) .
\end{aligned}
$$



Figure 3. $N S_{2}[1]$ and $N S_{2}[n]$ Polypropylenimin octaamin Dendrimer.
In Table 1, this topological index are calculated for two classes of dendrimers.

Table 1. GA $_{1}$ Index for some Dendrimer Graphs.

| $\boldsymbol{n}$ | $G A_{1}$ Index of $N S_{1}[n]$ | $G A_{1}$ Index of $N S_{2}[n]$ |
| :---: | :---: | :---: |
| $\mathbf{1}$ | 33.9525 | 20.6500 |
| $\mathbf{2}$ | 96.0862 | 52.1788 |
| $\mathbf{3}$ | 220.3537 | 115.2364 |
| $\mathbf{4}$ | 468.8886 | 241.3515 |
| $\mathbf{5}$ | 965.9583 | 493.5818 |
| $\mathbf{6}$ | 1960.1000 | 998.0424 |
| $\mathbf{7}$ | 3948.4000 | 2007.0000 |
| $\mathbf{8}$ | 7924.9000 | 4024.8000 |
| $\mathbf{9}$ | 15878.0000 | 8060.5000 |
| $\mathbf{1 0}$ | 31784.0000 | 16132.0000 |

## References

1. A. R. Ashrafi and P. Nikzad, Connectivity index of the family of dendrimer nanostar, Digest Journal of Nanomaterials and Biostructures 4 (2009) 269-273.
2. G. Fath-Tabar, B. Furtula and I. Gutman, A new geometric-arithmetic index, J. Math. Chem. 47 (2010) 477-486.
3. D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degree of edges, J. Math. Chem. 46 (2009) 1368-1376.
4. K. Yamamoto, M. Higuchi, S. Shiki, M. Tsuruta and H. Chiba, Stepwise radial complexation of imine groups in phenylazomethine dendrimers, Nature 415 (2002) 509-511.
5. M. Ghorbani and M. Jalali, Computing a new topological index of nano structures, Digest Journal of Nanomaterials and Biostructures 4 (2009) 681-685.

[^0]:    - Corresponding author.

    Received: March 25, 2013; Accepted: May 1, 2014.

