A Note on Revised Szeged Index of Graph Operations

NASRIN DEHGARDI ${ }^{\bullet}$

Department of Mathematics and Computer Science, Sirjan University of Technology, Sirjan, I. R. Iran

ARTICLE INFO

Article History:
Received 30 July 2016
Accepted 8 June 2017
Published online 6 January 2018
Academic Editor: Hassan Yousefi -Azari

Keywords:

Topological index
Revised Szeged index
Graph operation

ABSTRACT
Let G be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as

$$
S z^{*}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right),
$$

where $n_{u}(e \mid G)$ denotes the number of vertices in Glying closer to u than to v and $n_{G}(e)$ is the number of equidistant vertices of e in G. In this paper, we compute the revised Szeged index of the join and corona product of graphs.
© 2018 University of Kashan Press. All rights reserved

1 Introduction

Let G be a finite and simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The integers $n=n(G)=|V(G)|$ and $m=m(G)=|E(G)|$ are the order and the size of the graph G, respectively. For a vertex $v \in V(G)$, the open neighborhood of v, denoted by $N_{G}(v)=$ $N(v)$ is the set $\{u \in V(G) \mid u v \in E(G)\}$. The degree of $v \in V(G)$, denoted by $d_{G}(v)$, is defined by $d_{G}(v)=\left|N_{G}(v)\right|$. Let $u, v \in V(G)$, then the distance $d_{G}(u, v)$ between u and v is defined as the length of any shortest path in G connecting u and v. We consult [14] for notation and terminology which are not defined here.

The first and second Zagreb indices are defined as $M_{1}(G)=\sum_{u \in V(G)} d_{G}^{2}(u)$ and $M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) d_{G}(v)$, respectively. Furtula and Gutman [5] defined the

[^0]forgotten topological index as $F(G)=\sum_{u v \in E(G)}\left(d_{G}^{2}(u)+d_{G}^{2}(v)\right)$. The interested readers are referred to $[3,7]$ for more information on this topic.

A vertex $w \in V(G)$, is said to be equidistant from the edge $e=u v$ of G if $d_{G}(u, w)=d_{G}(v, w)$. The number of equidistant vertices of e is denoted by $n_{G}(e)$. Let $u v$ be an edge of G. Define the sets $N(u, G)=\left\{x \in V(G) \mid d_{G}(u, x)<d_{G}(v, x)\right\}$ and $N(v, G)=\left\{x \in V(G) \mid d_{G}(v, x)<d_{G}(u, x)\right\}$ consisting, respectively, of vertices of G lying closer to u than to v, and lying closer to v than to u. The number of such vertices is then $n_{u}(e \mid G)=|N(u, G)|$ and $n_{v}(e \mid G)=|N(v, G)|$. Note that vertices equidistant to u and v are not included into either $N(u, G)$ or $N(v, G)$. It also worth noting that $u \in N(u, G)$ and $v \in N(v, G)$, which implies that $n_{u}(e \mid G) \geq 1$ and $n_{u}(e \mid G) \geq 1$. The Szeged index $S z(G)$ was introduced by Gutman [6]. It is defined as $S z(G)=\sum_{e=u v \in E(G)} n_{u}(e \mid G) n_{v}(e l G)$.

The Szeged index in graphs is well studied in the literature, see for example [9,10]. Randić [13] observed that the Szeged index does not take into account the contributions of the vertices at equal distances from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named as the revised Szeged index. The revised Szeged index of a connected graph G is defined as $S z^{*}(G)=\sum_{e=u v \in E(G)}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right)$. Nagarajan et al. [11] obtained the revised Szeged index of the Cartesian product of two connected graphs. In this paper we compute the revised Szeged index of the join and corona product of graphs. Readers interested in more information on computing topological indices of graph operations can be referred to [1,2,4,8,12].

2. Main Results

In this section, we compute the revised Szeged index of the join and corona product of graphs. We let for every edge $e=u v \in E(G), t_{u v}(G)=\left|N_{G}(u) \cap N_{G}(v)\right|$.

2.1. The Join of Graphs

The join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}. Obviously, $|V(G)|=\left|V_{1}\right|+\left|V_{2}\right|$ and $|E(G)|=\left|E_{1}\right|+\left|E_{2}\right|+\left|V_{1}\right|\left|V_{2}\right|$.

Theorem 1. Let G_{1} be a graph of order n_{1} and of size m_{1} and let G_{2} be a graph of order n_{2} and of size m_{2}. If $G=G_{1}+G_{2}$, then

$$
\begin{aligned}
S Z^{*}(G) & =\frac{2 M_{2}\left(G_{1}\right)+2 M_{2}\left(G_{2}\right)-n_{2} M_{1}\left(G_{1}\right)-n_{1} M_{1}\left(G_{2}\right)-F\left(G_{1}\right)-F\left(G_{2}\right)}{4} \\
& +\frac{4 n_{1}^{2} n_{2}^{2}+8 m_{1} m_{2}+m_{1}\left(n_{1}^{2}+6 n_{1} n_{2}-3 n_{2}^{2}\right)+m_{2}\left(n_{2}^{2}+6 n_{1} n_{2}-3 n_{1}^{2}\right)}{4}
\end{aligned}
$$

Proof. By definition, $S z^{*}(G)=\sum_{u v \in E(G)}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right)$. We partition the edges of G in to three subset E_{1}, E_{2} and E_{3}, as $E_{1}=\left\{e=u v \mid u, v \in V\left(G_{1}\right)\right\}, E_{2}=$ $\left\{e=u v \mid u, v \in V\left(G_{2}\right)\right\}$ and $E_{3}=\left\{e=u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$.

Let $e=u v \in E_{1}$. If $w \in V\left(G_{2}\right)$ or $w \in N_{G_{1}}(u) \cap N_{G_{1}}(v)$, then $d_{G}(u, w)=$ $d_{G}(v, w)=1$ and if $w \notin N_{G_{1}}(u) \cup N_{G_{1}}(v)$, then $d_{G}(u, w)=d_{G}(v, w)=2$. Hence $n_{u}(e \mid G)=d_{G_{1}}(u)-t_{u v}\left(G_{1}\right)+1, n_{v}(e \mid G)=d_{G_{1}}(v)-t_{u v}\left(G_{1}\right)+1 \quad$ and $\quad n_{G}(e)=n_{1}+$ $n_{2}+2 t_{u v}\left(G_{1}\right)-\left(d_{G_{1}}(u)+d_{G_{1}}(v)\right)-2$. Then for every edge $e=u v \in E_{1}$,

$$
\begin{aligned}
\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\left(\frac{n_{1}+n_{2}+d_{G_{1}}(u)-d_{G_{1}}(v)}{2}\right)\left(\frac{n_{1}+n_{2}+d_{G_{1}}(v)-d_{G_{1}}(u)}{2}\right) \\
& =\frac{\left(n_{1}+n_{2}\right)^{2}}{4}+\frac{d_{G_{1}}(u) d_{G_{1}}(v)}{2}-\frac{d_{G_{1}}^{2}(u)+d_{G_{1}}^{2}(v)}{4} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\sum_{u v \in E_{1}}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\sum_{u v \in E_{1}} \frac{\left(n_{1}+n_{2}\right)^{2}}{4}+\sum_{u v \in E_{1}} \frac{d_{G_{1}}(u) d_{G_{1}}(v)}{2} \\
& -\sum_{u v \in E_{1}} \frac{d_{G_{1}}^{2}(u)+d_{G_{1}}^{2}(v)}{4} \\
& =\frac{\left(n_{1}+n_{2}\right)^{2}}{4} m_{1}+\frac{M_{2}\left(G_{1}\right)}{2}-\frac{F\left(G_{1}\right)}{4} . \tag{1}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\sum_{u v \in E_{2}}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right)=\frac{\left(n_{1}+n_{2}\right)^{2}}{4} m_{2}+\frac{M_{2}\left(G_{2}\right)}{2}-\frac{F\left(G_{2}\right)}{4} . \tag{2}
\end{equation*}
$$

Let $e=u v \in E_{3}$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. If $w \in N_{G_{1}}(u) \cup N_{G_{2}}(v)$, then $\quad d_{G}(u, w)=d_{G}(v, w)=1$. Hence $\quad n_{u}(e \mid G)=n_{2}-d_{G_{2}}(v)+1, n_{v}(e \mid G)=$ $n_{1}-d_{G_{1}}(u)+1$ and $n_{G}(e)=d_{G_{1}}(u)+d_{G_{2}}(v)-2$. Then for every edge $e=u v \in E_{3}$,

$$
\begin{aligned}
\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\left(\frac{2 n_{2}+d_{G_{1}}(u)-d_{G_{2}}(v)}{2}\right)\left(\frac{2 n_{1}+d_{G_{2}}(v)-d_{G_{1}}(u)}{2}\right) \\
& =n_{1} n_{2}+\frac{n_{1}-n_{2}}{2} d_{G_{1}}(u)+\frac{n_{2}-n_{1}}{2} d_{G_{2}}(v) \\
& -\frac{d_{G_{1}}^{2}(u)}{4}-\frac{d_{G_{2}}^{2}(v)}{4}+\frac{d_{G_{1}}(u) d_{G_{2}}(v)}{2} .
\end{aligned}
$$

Set $Y=\sum_{u v \in E_{3}}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right)$. Then,

$$
\begin{aligned}
Y & =\sum_{u v \in E_{3}} n_{1} n_{2}+\sum_{u v \in E_{3}} \frac{n_{1}-n_{2}}{2} d_{G_{1}}(u)+\sum_{u v \in E_{3}} \frac{n_{2}-n_{1}}{2} d_{G_{2}}(v)-\sum_{u v \in E_{3}} \frac{d_{G_{1}}^{2}(u)}{4} \\
& -\sum_{u v \in E_{3}} \frac{d_{G_{2}}^{2}(v)}{4}+\sum_{u v \in E_{3}} \frac{d_{G_{1}}(u) d_{G_{2}}(v)}{2}
\end{aligned}
$$

$$
\begin{equation*}
=n_{1}^{2} n_{2}^{2}+m_{1} n_{2}\left(n_{1}-n_{2}\right)+m_{2} n_{1}\left(n_{2}-n_{1}\right)+2 m_{1} m_{2}-\frac{n_{2} M_{1}\left(G_{1}\right)}{4}-\frac{n_{1} M_{1}\left(G_{2}\right)}{4} . \tag{3}
\end{equation*}
$$

By Equations (1), (2) and (3), we have:

$$
\begin{aligned}
S z^{*}(G) & =\frac{\left(n_{1}+n_{2}\right)^{2}}{4} m_{1}+\frac{M_{2}\left(G_{1}\right)}{2}-\frac{F\left(G_{1}\right)}{4}+\frac{\left(n_{1}+n_{2}\right)^{2}}{4} m_{2}+\frac{M_{2}\left(G_{2}\right)}{2}-\frac{F\left(G_{2}\right)}{4}+n_{1}^{2} n_{2}^{2}+2 \mathrm{~m}_{1} \mathrm{~m}_{2} \\
& -\frac{n_{1} M_{1}\left(G_{2}\right)}{4}+m_{1} n_{2}\left(n_{1}-n_{2}\right)+m_{2} n_{1}\left(n_{2}-n_{1}\right)-\frac{n_{2} M_{1}\left(G_{1}\right)}{4} \\
& =\frac{2 M_{2}\left(G_{1}\right)+2 M_{2}\left(G_{2}\right)-n_{2} M_{1}\left(G_{1}\right)-n_{1} M_{1}\left(G_{2}\right)-F\left(G_{1}\right)-F\left(G_{2}\right)}{4} \\
& +\frac{4 n_{1}^{2} n_{2}^{2}+8 m_{1} m_{2}+m_{1}\left(n_{1}^{2}+6 n_{1} n_{2}-3 n_{2}^{2}\right)+m_{2}\left(n_{2}^{2}+6 n_{1} n_{2}-3 n_{1}^{2}\right)}{4} .
\end{aligned}
$$

Let $P_{n}, n \geq 2$ and $C_{n}, n \geq 3$ denote the path and the cycle on n vertices, respectively.

Corollary 2. The following equalities are hold:

1. $S z^{*}\left(P_{n}+P_{m}\right)=\frac{4 n^{2} m^{2}+n^{3}+m^{3}+3 n m^{2}+3 m n^{2}+2 n^{2}+2 m^{2}-2 n-2 m-12 n m+4}{4}$.
2. $S z^{*}\left(P_{n}+C_{m}\right)=\frac{4 n^{2} m^{2}+n^{3}+m^{3}+3 n m^{2}+3 m n^{2}-n^{2}+3 m^{2}-2 m-6 n m-2}{4}$.
3. $S z^{*}\left(C_{n}+C_{m}\right)=\frac{4 n^{2} m^{2}+n^{3}+m^{3}+3 n m^{2}+3 m n^{2}}{4}$.

2.2. The Corona Product of Graphs

The corona product $G=G_{1} o G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is as the graph obtained by taking one copy of G_{1} and $\left|V_{1}\right|$ copies of G_{2} and joining the i-th vertex of G_{1} to every vertex in i-th copy of G_{2}. Obviously, $|V(G)|=$ $\left|V_{1}\right|+\left|V_{1}\right|\left|V_{2}\right|$ and $|E(G)|=\left|E_{1}\right|+\left|V_{1}\right|\left|E_{2}\right|+\left|V_{1}\right|\left|V_{2}\right|$.

Theorem 3. Let G_{1} be a graph of order n_{1} and of size m_{1} and let G_{2} be a graph of order n_{2} and of size m_{2}. If $G=G_{1} o G_{2}$, then

$$
\begin{aligned}
S z^{*}(G) & =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4}\left(m_{1}+m_{2}\right)+n_{1} n_{2}\left(n_{1} n_{2}+n_{1}-1\right) \\
& +n_{1} m_{2}\left(n_{1} n_{2}+n_{1}-2\right)-\frac{\left(n_{2}+1\right)^{2}}{4} \sum_{u v \in E_{1}}\left(n_{u}^{2}\left(e \mid G_{1}\right)+n_{v}^{2}\left(e \mid G_{1}\right)\right) \\
& +\frac{2\left(n_{2}+1\right)^{2} S z\left(G_{1}\right)+2 M_{2}\left(G_{2}\right)-n_{1} M_{1}\left(G_{2}\right)-F\left(G_{2}\right)}{4} .
\end{aligned}
$$

Proof. By definition, $S z^{*}(G)=\sum_{u v \in E(G)}\left(n_{u}(e l G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e l G)+\frac{n_{G}(e)}{2}\right)$. We partition the edges of G in to three subsets E_{1}, E_{2} and E_{3}, as $E_{1}=\left\{e=u v \mid u, v \in V\left(G_{1}\right)\right\}, E_{2}=$ $\left\{e=u v \mid u, v \in V\left(G_{2}\right)\right\}$ and $E_{3}=\left\{e=u v \mid u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Let $e=u v \in E_{1}$. Then for each vertex w closer to u than v, the vertices of the copy of G_{2} attached to w are
also closer to u than v. Since each copy of G_{2} has exactly n_{2} vertices, then $n_{u}(e l G)=$ $\left(n_{2}+1\right) n_{u}\left(e \mid G_{1}\right)$. Similarly $n_{v}(e \mid G)=\left(n_{2}+1\right) n_{v}\left(e \mid G_{1}\right)$. Then $n_{G}(e)=n_{1} n_{2}+n_{1}-$ $\left(n_{2}+1\right) n_{u}\left(e \mid G_{1}\right)-\left(n_{2}+1\right) n_{v}\left(e \mid G_{1}\right)$. Hence for every edge $e=u v \in E_{1}$,

$$
\begin{aligned}
\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4}+\frac{\left(n_{2}+1\right)^{2} n_{u}\left(e \mid G_{1}\right) n_{v}\left(e \mid G_{1}\right)}{2} \\
& -\frac{\left(n_{2}+1\right)^{2}\left(n_{u}^{2}\left(e \mid G_{1}\right)+n_{v}^{2}\left(e \mid G_{1}\right)\right)}{4} .
\end{aligned}
$$

Define $Z=\sum_{u v \in E_{1}}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right)$. Then,

$$
\begin{align*}
Z & =\sum_{u v \in E_{1}} \frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4}+\sum_{u v \in E_{1}} \frac{\left(n_{2}+1\right)^{2} n_{u}\left(e \mid G_{1}\right) n_{v}\left(e \mid G_{1}\right)}{2}-\sum_{u v \in E_{1}} \frac{\left(n_{2}+1\right)^{2}\left(n_{u}^{2}\left(e \mid G_{1}\right)+n_{v}^{2}\left(e \mid G_{1}\right)\right)}{4} \\
& =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4} m_{1}+\frac{\left(n_{2}+1\right)^{2} S z\left(G_{1}\right)}{2}-\frac{\left(n_{2}+1\right)^{2}}{4} \sum_{e=u v \in E_{1}}\left(n_{u}^{2}\left(e \mid G_{1}\right)+n_{v}^{2}\left(e \mid G_{1}\right)\right) . \tag{4}
\end{align*}
$$

Let $e=u v \in E_{2}$. If $w \in V\left(G_{2}\right)$ and $w \in N_{G_{2}}(u) \cap N_{G_{2}}(v)$, then $d_{G}(u, w)=$ $d_{G}(v, w)=1$ and if $w \notin N_{G_{2}}(u) \cup N_{G_{2}}(v)$, then $d_{G}(u, w)=d_{G}(v, w)=2$. Hence $n_{u}(e \mid G)=d_{G_{2}}(u)-t_{u v}\left(G_{2}\right)+1, n_{v}(e \mid G)=d_{G_{2}}(v)-t_{u v}\left(G_{2}\right)+1$ and $n_{G}(e)=n_{1} n_{2}+$ $n_{1}+2 t_{u v}\left(G_{2}\right)-\left(d_{G_{2}}(u)+d_{G_{2}}(v)\right)-2$. Hence for every edge $e=u v \in E_{2}$,

$$
\begin{aligned}
\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\left(\frac{n_{1} n_{2}+n_{1}+d_{G_{2}}(u)-d_{G_{2}}(v)}{2}\right)\left(\frac{n_{1} n_{2}+n_{1}+d_{G_{2}}(v)-d_{G_{2}}(u)}{2}\right) \\
& =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4}+\frac{d_{G_{2}}(u) d_{G_{2}}(v)}{2}-\frac{d_{G_{2}}^{2}(u)+d_{G_{2}}^{2}(v)}{4} .
\end{aligned}
$$

Therefore

$$
\begin{align*}
\sum_{u v \in E_{2}}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\sum_{u v \in E_{2}} \frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4}+\sum_{u v \in E_{2}} \frac{d_{G_{2}}(u) d_{G_{2}}(v)}{2} \\
& -\sum_{u v \in E_{2}} \frac{d_{G_{2}}^{2}(u)+d_{G_{2}}^{2}(v)}{4} \\
& =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4} m_{2}+\frac{M_{2}\left(G_{2}\right)}{2}-\frac{F\left(G_{2}\right)}{4} \tag{5}
\end{align*}
$$

Let $e=u v \in E_{3}$ such that $u \in V\left(G_{1}\right)$ and $v \in V\left(G_{2}\right)$. Hence $n_{u}(e l G)=n_{1} n_{2}+$ $n_{1}-d_{G_{2}}(v)-1$. Since $v \in N(v, G)$, we have $n_{v}(e \mid G)=1$ and so $n_{G}(e)=d_{G_{2}}(v)$. Hence

$$
\begin{aligned}
\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\left(\frac{2\left(n_{1} n_{2}+n_{1}-1\right)-d_{G_{2}}(v)}{2}\right)\left(\frac{2+d_{G_{2}}(v)}{2}\right) \\
& =\left(n_{1} n_{2}+n_{1}-1\right)+\frac{n_{1} n_{2}+n_{1}-2}{2} d_{G_{2}}(v)-\frac{d_{G_{2}}^{2}(v)}{4} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{u v \in E_{3}}\left(n_{u}(e \mid G)+\frac{n_{G}(e)}{2}\right)\left(n_{v}(e \mid G)+\frac{n_{G}(e)}{2}\right) & =\sum_{u v \in E_{3}}\left(n_{1} n_{2}+n_{1}-1\right)-\sum_{u v \in E_{3}} \frac{d_{G_{2}}^{2}(v)}{4} \\
& +\sum_{e=u v \in E_{3}} \frac{n_{1} n_{2}+n_{1}-2}{2} d_{G_{2}}(v)
\end{aligned}
$$

$$
\begin{align*}
& =n_{1} n_{2}\left(n_{1} n_{2}+n_{1}-1\right)-\frac{n_{1} M_{1}\left(G_{2}\right)}{4} \\
& +n_{1} m_{2}\left(n_{1} n_{2}+n_{1}-2\right) . \tag{6}
\end{align*}
$$

By Equations (4), (5) and (6), we have:

$$
\begin{aligned}
S z^{*}(G) & =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4} m_{1}+\frac{\left(n_{2}+1\right)^{2} S z\left(G_{1}\right)}{2}-\frac{\left(n_{2}+1\right)^{2}}{4} \sum_{u v \in E_{1}}\left(n_{u}^{2}\left(e \mid G_{1}\right)+n_{v}^{2}\left(e \mid G_{1}\right)\right) \\
& +\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4} m_{2}+\frac{M_{2}\left(G_{2}\right)}{2}-\frac{F\left(G_{2}\right)}{4}+n_{1} n_{2}\left(n_{1} n_{2}+n_{1}-1\right) \\
& +n_{1} m_{2}\left(n_{1} n_{2}+n_{1}-2\right)-\frac{n_{1} M_{1}\left(G_{2}\right)}{4} \\
& =\frac{\left(n_{1} n_{2}+n_{1}\right)^{2}}{4}\left(m_{1}+m_{2}\right)+n_{1} n_{2}\left(n_{1} n_{2}+n_{1}-1\right) \\
& +n_{1} m_{2}\left(n_{1} n_{2}+n_{1}-2\right)-\frac{\left(n_{2}+1\right)^{2}}{4} \sum_{u v \in E_{1}}\left(n_{u}^{2}\left(e \mid G_{1}\right)+n_{v}^{2}\left(e \mid G_{1}\right)\right) \\
& +\frac{2\left(n_{2}+1\right)^{2} S z\left(G_{1}\right)+2 M_{2}\left(G_{2}\right)-n_{1} M_{1}\left(G_{2}\right)-F\left(G_{2}\right)}{4} .
\end{aligned}
$$

Corollary 4. The following equalities are hold:

1. $S z^{*}\left(P_{n} o P_{m}\right)=\frac{2 n^{3} m^{2}+3 n^{2} m^{3}+24 n^{2} m^{2}+4 n^{3} m-2 n m^{2}+2 n^{3}+15 m n^{2}-15 n^{2}+40 n-52 n m-6}{4}$.
2. $S Z^{*}\left(P_{n} o C_{m}\right)=\frac{2 n^{3} m^{2}+2 n^{2} m^{3}+28 n^{2} m^{2}+4 n^{3} m-2 n m^{2}+2 n^{3}+26 m n^{2}-2 n-52 n m}{4}$.
3. $S Z^{*}\left(C_{n} o P_{m}\right)=\frac{n^{3} m^{2}+n^{2} m^{3}+9 n^{2} m^{2}+2 n^{3} m+n^{3}+3 m n^{2}-5 n^{2}-16 n m-2 n-2}{4}$.
4. $S z^{*}\left(C_{n} O C_{m}\right)=\frac{n^{3} m^{2}+n^{2} m^{3}+10 n^{2} m^{2}+2 n^{3} m+n^{3}+9 m n^{2}-16 n m}{4}$.

References

1. A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math. 158 (2010) 1571-1578.
2. M. Azari and A. Iranmanesh, Some inequalities for the multiplicative sum Zagreb index of graph operations, J. Math. Inequal. 9 (2015) 727-738.
3. K. C. Das and I. Gutman, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
4. N. De, S. M. Abu Nayeem and A. Pal, F-index of some graph operations, Discrete Math. Algorithm. Appl. 8 (2016) 1650025.
5. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
6. I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes New York 27 (1994) 9-15.
7. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
8. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804-811.
9. S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (1996) 45-49.
10. T. Mansour and M. Schork, The vertex PI and Szeged index of bridge and chain graphs, Discrete Appl. Math. 157 (2009) 1600-1606.
11. S. Nagarajan, K. Pattabiraman and M. Chendra Sekharan, Revised Szeged index of product graphs, Gen. Math. Notes 23 (2014) 71-78.
12. Z. Yarahmadi and A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat 26 (2012) 467-472.
13. M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49 (2002) 483-496.
14. D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc., Upper Saddle River, New Jersey, 2000.

[^0]: - Corresponding Author (Email address: n.dehgardi @ sirjantech.ac.ir) DOI: 10.22052/ijmc.2017.58647.1228

