Iranian Journal of Mathematical Chemistry

On the Eccentric Connectivity Index of Unicyclic Graphs

Yaşar Nacaroc̆lu ${ }^{1, \bullet}$ and Ayşe Dilek Maden ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics Faculty of Science and Arts, University of Kahramanmaras, Sutcu Imam, 46000, Kahramanmaras, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Selçuk University, Campus, 42075, Konya, Turkey

ARTICLE INFO
 Article History:
 Received 13 August 2016
 Accepted 12 March 2017
 Published online 5 January 2018
 Academic Editor: Bijan Taeri

Keywords:
Unicyclic graph
Eccentric connectivity index Matching number
Perfect matching

ABSTRACT

In this paper, we obtain the upper and lower bounds on the eccentricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

1 Introduction

Throughout this paper, G will denote a simple connected graph with n vertices (labeled by $\left.v_{1}, v_{2}, \ldots, v_{n}\right)$. Moreover, for $1 \leq i \leq n$, the neighbor and the degree of each vertex v_{i} will be denoted by $N\left(v_{i}\right)$ and $d_{v_{i}}$, respectively. For two vertices u and v in $V(G)$, we denote by $d(u, v)$ the distance between u and v i.e. the length of the shortest $u-v$ path in G.

[^0]A pendant vertex is a vertex of degree 1 and a pendant edge is an edge incident to a pendant vertex. Denote by $P V$ the set of pendant vertices of a graph G.

The eccentricity of a vertex u in a graph G, denoted by e_{u}, is the maximum distance from u to any vertex. That is, $e_{u}=\max \{d(u, v): v \in V\}$.

A matching M of a graph G is a subset of $E(G)$ such that no two edges in M share a common vertex. The matching number of G, denoted by m, is the number of edges of a maximum matching in G. If every vertex of G incident with an edge of M, then the matching M is perfect.

Denote by C_{n} the cycle on n vertices. A unicyclic graph is a connected graph with a unique cycle. Other undefined terminologies and notations of graphs may refer to [2].

Molecular descriptors have found a wide application in QSPR / QSAR studies [15]. Among them, topological indices have a prominent place.

Sharma, Goswami and Madan [14] introduced a distance-based topological index which named eccentric connectivity index $\xi^{c}(G)$ as follows:

$$
\xi^{c}(G)=\sum_{u \in V(G)} d_{u} e_{u}
$$

The eccentric connectivity index has been employed successfully for the development of numerous mathematical models of biological activities of diverse nature [7,8,13,14].

Recently Ashrafi et. al. [1] obtained exact formulas for the eccentric connectivity index of $\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{~s})$ nanotube and $\mathrm{TC}_{4} \mathrm{C}_{8}(\mathrm{~s})$ nanotorus. Ilič and Gutman [6] examined the eccentric connectivity index of chemical trees. In [18], Zhou et al. gave mathematical properties of eccentric connectivity index. Also in [11], the authors investigated the eccentric connectivity index of trees. Moreover, in [17], Zhang investigated the eccentric connectivity index of unicyclic graphs. Recall that in mathematical chemistry a unicyclic graph with perfect matching is known as conjugated unicyclic graphs. We may refer $[9,10]$ for more and some other details on conjugated unicyclic graphs.

In this paper, we present upper and lower bounds on the eccentric connectivity index of unicyclic graphs with perfect matchings. Also we give lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.

Throughout this paper, U_{n} denote unicyclic graphs with n vertices and $U(n, m)$ denote unicyclic graphs with n vertices and m matchings. Let $U(2 m, m)$ be the set of unicyclic graphs with perfect matching and $2 m$ vertices. We make use of the following results in this paper.

Lemma 1.1. [3] Let $G \in U(2 m, m)$, where $m \geq 3$, and let T be a branch of G with the root r. If $u \in V(T)$ is a pendant vertex furthest from the root r with $d_{G}(u, r) \geq 2$, then u is adjacent to a vertex v of degree two.

Lemma 1.2. [12] Let $G \in U(2 m, m)$. If $P V \neq \varnothing$, then for any vertex $u \in V(G)$, $|N(u) \cap P V| \leq 1$.

Lemma 1.3. [16] Let G be a graph in $U(n, m)$ and $G{ }^{\circledR} C_{n}$, where $(n>2 m)$. Then there is an m-matching M and a pendant vertex v such that M does not saturate v.

Theorem 1.4. [6] Let w be a vertex of a nontrivial connected graph G. For non-negative integers p and q, let $G(p, q)$ denote the graph obtained from G by attaching to the vertex w pendent paths $P=w v_{1} v_{2} \ldots v_{p}$ and $Q=w u_{1} u_{2} \ldots u_{q}$ of lengths p and q, respectively. If $p \geq q \geq 1$, then

$$
\xi^{c}(G(p, q))=\xi^{c}(G(p+1, q-1)) .
$$

Let P_{n}^{3} denote the unicyclic graph obtained from C_{3} by identifying one of its vertices with a pendant vertex of the path P_{n-2}. Let $C_{a, b}(l)$ denote the unicyclic graph obtained from $C(l)$ by attaching the path P_{a} at one vertex and the path P_{b} at another vertex. Let $C_{a, b}(l)$ and N_{n}^{3} denote unicyclic graphs of the forms as depicted in Figure 1.

$C_{a, b}(l)$ where $a, b \geq 1$

N_{n}^{3}

Figure 1
Lemma 1.5. [17] Let G be a graph in U_{n} with $n \geq 5$ vertices. If $G \in C_{a, b}(l)$ and $G ® N_{n}^{3}$, then $\xi^{c}\left(P_{n}^{3}\right)>\xi^{c}\left(N_{n}^{3}\right)>\xi^{c}(G)$.

Theorem 1.6. [17] Let G be a graph in $U_{n}, n \geq 5$. Then

$$
\xi^{c}(G) \leq \xi^{c}\left(P_{n}^{3}\right)= \begin{cases}\frac{1}{2}\left(3 n^{2}-4 n-6\right), & n \text { is even } \\ \frac{1}{2}\left(3 n^{2}-4 n-5\right), & n \text { is odd }\end{cases}
$$

where the equality holds if and only if $G \circledR{ }^{\circledR} P_{n}^{3}$.

2 Main Results

After all above material, we are ready to present our results on the bounds for the eccentric connectivity index of unicyclic graphs. Let H_{1}^{m} be the graph on $2 m$ vertices obtained from C_{3} by attaching a pendant edge together with $m-2$ paths of length 2 at one vertex. Let H_{2}^{m} be the graph on $2 m$ vertices obtained from C_{3} by attaching a pendant edge and $m-3$ paths of length 2 at one vertex, and single pendant edges at the other vertices. Let H_{3}^{m} be the graph on $2 m$ vertices obtained from C_{3} by attaching a pendant edge at one vertex and $m-2$ paths of length 2 at another vertex. Let H_{4}^{m} be the graph on $2 m$ vertices obtained from C_{4} by attaching $m-2$ paths of length 2 at one vertex.

Let H_{5}^{m} be the graph on $2 m$ vertices obtained from C_{4} by attaching a pendant edge atone vertex and $m-3$ paths of length 2 at another vertex. $H_{1}^{m}, H_{2}^{m}, H_{3}^{m}, H_{4}^{m}$ and H_{5}^{m} are shown in Figure 2.

Figure 2

Theorem 2.1. Let $G \in U(2 m, m) \backslash\left\{H_{1}^{m}, H_{2}^{m}, H_{3}^{m}\right\}$, where $m \geq 5$. Then $\xi^{c}(G) \geq 12 m$. The equality holds if and only if $G \cong H_{4}^{m}$ or $G \cong H_{5}^{m}$.

Proof. We prove the result by induction on m. By direct calculation, we see that the result is provided for $m=5$. Let $m \geq 5$. We assume that the result holds for graphs in $U(2 m-2, m-1)$.

Case 1. G has a pendant vertex u which is adjacent to a vertex v of degree two. Let w be adjacent of v different from u. In this case, $u v \in M$. Let $G^{\prime}=G-u-v$. Then $G^{\prime} \in U(2 m-2, m-1)$. Obviously, if $e_{u}=e$, then $e_{v}=e-1$ and $e_{w}=e-2$ since $m \geq 5$. Also
since $m \geq 5, e \geq 4$. We know that $e_{t}=e_{t}^{\prime}$ or $e_{t}=e_{t}^{\prime}+1$ or $e_{t}=e_{t}^{\prime}+2$ for $t \in V(G)-\{u, v, w\}$. Therefore, we write

$$
\begin{align*}
\xi^{c}(G)-\xi^{c}\left(G^{\prime}\right) & =e_{u} d_{u}+e_{v} d_{v}+e_{w} d_{w}-e_{w} d_{w^{+}}+\sum_{t \in V(G)-\{u, v, w\}} d_{t}\left[e_{t}-e_{t}^{\prime}\right] \\
& =e .1+2(e-1)+d_{w}(e-2)-\left(d_{w}-1\right)(e-2)+\sum_{t \in V(G)-\{u, v, w\}} d_{t}\left[e_{t}-e_{t}^{\prime}\right] \\
& =4 e-4+\sum_{t \in V(G)-\{u, v, w\}} d_{t}\left[e_{t}-e_{t}^{\prime}\right] . \tag{1}
\end{align*}
$$

Using the equality (1), we get the following inequality $\xi^{c}(G) \geq \xi^{c}\left(G^{\prime}\right)+4 e-4$. Using the induction hypothesis and the fact $e \geq 4$, we have $\xi^{c}(G) \geq 12(m-1)+4.4-4=12 m$. This is the required result.

Case 2. G is a cycle C_{k} together with some pendant edges attached to some vertices on C_{k}. If $G \cong C_{2 m}$ then $\xi(G)=4 m^{2} \geq 12 m$ for $m \geq 5$. Let $G{ }^{\circledR} C_{2 m}$. Let p and q denote the number of pendant vertices and the number of vertices with degree two in G, respectively. Therefore, the number of vertices with degree three be p. Note that we have $2 p+q=2 m$ and $p \leq m$. Let $V_{1}(G)=\left\{u \in V(G): d_{u}=1\right\}, V_{2}(G)=\left\{v \in V(G): d_{v}=2\right\}$ and $V_{3}(G)=\left\{t \in V(G): d_{t}=3\right\}$. If u is a pendant vertex, $e_{u} \geq\left\lfloor\frac{m+1}{2}\right\rfloor+1$, if v is a vertex with degree two, $e_{v} \geq\left\lfloor\frac{m+1}{2}\right\rfloor$ and if t is a vertex with three degree, $e_{t} \geq\left\lfloor\frac{m+1}{2}\right\rfloor$. Thus

$$
\begin{aligned}
\xi^{c}(G) & =\sum_{u \in V_{1}(G)} 1 \cdot e_{u}+\sum_{v \in V_{2}(G)} 2 \cdot e_{v}+\sum_{t \in V_{3}(G)} 3 \cdot e_{t} \\
& \geq \sum_{u \in V_{1}(G)} 1 \cdot\left(\left\lfloor\frac{m+1}{2}\right\rfloor+1\right)+\sum_{v \in V_{2}(G)} 2 \cdot\left(\left\lfloor\frac{m+1}{2}\right\rfloor\right)+\sum_{t \in V_{3}(G)} 3 \cdot\left(\left\lfloor\frac{m+1}{2}\right\rfloor\right) \\
& =p\left(\left\lfloor\frac{m+1}{2}\right\rfloor+1\right)+2(2 m-2 p)\left(\left\lfloor\frac{m+1}{2}\right\rfloor\right)+3 p\left(\left\lfloor\frac{m+1}{2}\right\rfloor\right) \\
& =4 m\left\lfloor\frac{m+1}{2}\right\rfloor+p \geq 4 m\left\lfloor\frac{m+1}{2}\right\rfloor+1 .
\end{aligned}
$$

If m is odd, then since $m \geq 5$,

$$
\xi^{c}(G) \geq 4 m\left(\frac{m+1}{2}\right)+1=2 m^{2}+2 m+1 \geq 12 m
$$

If m is even, then since $m \geq 5$,

$$
\xi^{c}(G) \geq 4 m\left(\frac{m}{2}\right)+1=2 m^{2}+1 \geq 12 m
$$

The proof is now completed.
The next corollaries are the consequences of Theorem 2.1.

Corollary 2.2. Let $G \in U(2 m, m) \backslash\left\{H_{1}^{m}\right\}$, where $m \geq 5$. Then $\xi^{c}(G) \geq 12 m-1$. The equality holds if and only if $G \cong H_{2}^{m}$ or $G \cong H_{3}^{m}$.

Corollary 2.3. Let $G \in U(2 m, m)$, where $m \geq 5$. Then $\xi^{c}(G) \geq 12 m-3$. The equality holds if and only if $G \cong H_{1}^{m}$.

Let A_{1}^{m} denote the graph on n vertices obtained from C_{3} by attaching $n-2 m+1$ pendant edges and $m-2$ paths of length 2 together to one of three vertices of C_{3}. Let A_{2}^{m} denote the graph on n vertices obtained from C_{3} by attaching $n-2 m+1$ pendant edges and $m-3$ paths of length 2 together to one of three vertices, and two pendant edges to the other two vertices of C_{3}, respectively. Let A_{3}^{m} denote the graph on n vertices obtained from C_{3} by attaching $n-2 m$ pendant edges and $m-2$ paths of length 2 together to one of three vertices, and a pendant edge to another vertex of C_{3}, respectively. Let A_{4}^{m} denote the graph on n vertices obtained from C_{4} by attaching $n-2 m+1$ pendant edges and $m-3$ paths of length 2 together with one of the three vertices, and a pendant edge to another vertex of C_{4}, respectively.

Let A_{5}^{m} denote the graph on n vertices obtained from C_{4} by attaching $n-2 m$ pendant edges and $m-2$ paths of length 2 together to one of three vertices of $C_{3} . A_{1}^{m}, A_{2}^{m}$, A_{3}^{m}, A_{4}^{m} and A_{5}^{m} are shown in Figure 3.

Theorem 2.4. Let $G \in U(n, m) \backslash\left\{A_{1}^{m}, A_{2}^{m}, A_{3}^{m}\right\}(n \geq 2 m, m \geq 5)$. Then $\xi^{c}(G) \geq 5 n+2 m$. The equality holds if and only if $G \cong A_{4}^{m}$ or $G \cong A_{5}^{m}$.

Proof. We prove the result by induction on m. If $n=2 m$, then by Theorem 2.1, the result is clear. We assume that $n>2 m$. If $G \cong C_{n}$, then $n=2 m+1$, since G has an m-matching. So, since $m \geq 5$

$$
\xi^{c}(G)=\sum_{u \in V(G)} 2\left\lfloor\frac{2 m+1}{2}\right\rfloor=4 m^{2}+2 m \geq 5 n+2 m .
$$

We assume that $G{ }^{\circledR} C_{n}$. By Lemma 1.3, G has an m-matching M and pendant vertex v such that M does not saturate v. Let $G=G-v$. Then $G \in U(n-1, m)$. Let $e_{v}=e$ and u be unique neighbor of v pendant vertex. Since $m \geq 4$, then $e \geq 3$. Thus, we have

Figure 3

$$
\begin{align*}
\xi^{c}(G)-\xi^{c}\left(G^{\prime}\right) & =1 e+d_{u}(e-1)-\left(d_{u}-1\right)(e-1)+\sum_{t \in V(G)-\{u, v\}} d_{t}\left[e_{t}-e_{t}^{\prime}\right] \\
& =2 e-1+\sum_{t \in V(G)-\{u, v\}} d_{t}\left[e_{t}-e_{t}^{\prime}\right] . \tag{2}
\end{align*}
$$

Also, we have $0 \leq e_{t}-e_{t} \leq 2$. Using the equality (2), we get the following inequality

$$
\xi^{c}(G) \geq \xi^{c}\left(G^{\prime}\right)+2 e-1 .
$$

Using the induction hypothesis and the fact $e \geq 3$, we have

$$
\begin{aligned}
\xi^{c}(G) & \geq 5(n-1)+2 m+2 e-1 \\
& =5 n+2 m+2 e-6 \\
& \geq 5 n+2 m .
\end{aligned}
$$

This is the required result.
The next corollaries are the consequences of Theorem 2.4.

Corollary 2.5. Let $G \in U(n, m) \backslash\left\{A_{1}^{m}\right\}(n \geq 2 m, m \geq 5)$. Then $\xi^{c}(G) \geq 5 n+2 m-1$. The equality holds if and only if $G \cong A_{2}^{m}$ or $G \cong A_{3}^{m}$.

Corollary 2.6. Let $G \in U(n, m) \backslash\left\{A_{1}^{m}\right\}(n \geq 2 m, m \geq 5)$. Then $\xi^{c}(G) \geq 5 n+2 m-3$. The equality holds if and only if $G \cong A_{1}^{m}$.

Let U_{1}^{m} be the graph on $2 m$ vertices obtained from C_{3} by attaching a path of length $2 m-3$ at one vertex. Let U_{2}^{m} be the graph on $2 m$ vertices obtained from C_{4} by attaching
a path of length $2 m-4$ one vertex. Let U_{3}^{m} be the graph on $2 m$ vertices obtained from C_{3} by attaching a pendant edge at one vertex and a path of length $2 m-4$ at one vertex. Denote by U_{1}^{m}, U_{2}^{m} and U_{3}^{m} the graphs shown in Figure 2.

Figure 4
Theorem 2.7. Let $G \in U(2 m, m) \backslash\left\{U_{1}^{m}, U_{2}^{m}\right\}$, where $m \geq 4$. Then $\xi^{c}(G) \leq 6 m^{2}-4 m-7$ with equality if and only if $G \cong U_{3}^{m}$.

Proof. If $G \cong C_{n}$, then $\xi^{c}(G)=4 m^{2} \leq 6 m^{2}-4 m-7$ for $m \geq 4$. Let $G{ }^{\circledR} C_{n}$. Let G be a graph obtained from G by using Theorem 1.4. In this case, we obtain $G^{\prime} \in C_{a, b}(l)$. Then $\xi^{c}(G) \leq \xi^{c}\left(G^{\prime}\right)$. By applying Lemma 1.5 , we get $\xi^{c}(G) \leq \xi^{c}\left(G^{\prime}\right) \leq \xi^{c}\left(U_{1}^{m}\right)=6 m^{2}-4 m-7$. The proof is completed.

The next corollaries are the consequences of Theorem 2.7.
Corollary 2.8. Let $G \in U(2 m, m) \backslash\left\{U_{1}^{m}\right\}$, where $m \geq 4$. Then $\xi^{c}(G) \leq 6 m^{2}-4 m-6$ with equality if and only if $G \cong U_{2}^{m}$.

In Theorem 1.6, taking $n=2 m$, we have the following corollary.
Corollary 2.9. Let $G \in U(2 m, m)$, where $m \geq 4$. Then $\xi^{c}(G) \leq 6 m^{2}-4 m-3$ with equality if and only if $G \cong U_{1}^{m}$.

Remark 2.10. If $G \in U(2 m+1, m)$ By Theorem 1.6, $\xi^{c}(G) \leq 6 m^{2}+2 m-3$ with equality if and only if $G \cong P_{n}^{3}$ When $G \in U(n, m)(n \geq 2 m+2)$ we do not know upper bounds on $\xi^{c}(G)$. The case maybe much more complicated.

Remark 2.11. We note that Theorem 2.7 and Corollary 2.9 hold in $U(6,3)$ from the table of connected graphs on six vertices in [4]. But Corollary 2.8 does not hold in case of equality, since $\xi^{c}\left(U_{2}^{3}\right)=\xi^{c}\left(C_{6}\right)$ are in $U(6,3)$.

From the table of unicyclic graphs on eight vertices in [5], we also see that Theorem 2.1 and Corollary 2.3 hold in $U(8,4)$. But Corollary 2.2 does not hold in case of equality, since $\xi^{c}\left(H_{2}^{4}\right)=\xi^{c}\left(H_{3}^{4}\right)=\xi^{c}\left(C_{5}^{*}\right)$ are in $U(8,4)$ where C_{5}^{*} is as in Figure 5.

C_{5}^{*}

Figure 5
Acknowledgement. The second author is partially supported by TUBITAK and supported by the Scientific Research Project Office (BAP) of Selçuk University.

References

1. A. R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotube and nanotorus, J. Comput. Appl. Math. 235 (2011) 4561-4566.
2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillian Press, London, 1976.
3. A. Chang, F. Tian, On the spectral radius of unicyclic graphs with perfect matching, Linear Algebra Appl. 370 (2003) 237-250.
4. D. Cvetkovič and M. Petrič, A table of connected graphs on six vertices, Discrete Math. 50 (1984) 37-49.
5. D. Cvetkovič and P. Rowlinson, Spectra of unicyclic graphs, Graphs Comb. 3 (1987) 7-23.
6. A. Ilič, I. Gutman, Eccentric connectivity index of chemical trees, MATCH Commun. Math. Comput. Chem. 65 (2011) 731-744.
7. V. Kumar, A. K. Madan, Application of graph theory: Prediction of cytosolic phospholipase A2 inhibitory activity of propan-2-ones, J. Math. Chem. 39 (2006) 511-521.
8. V. Kumar, S. Sardana, A. K. Madan, Predicting anti-HIV activity of 2,3- diarly 1,3 thiazolidin - 4 ones: Computational approach using reformed eccentric connectivity index, J. Mol. Model. 10 (2004) 399-407.
9. J. Li, B. Zhou, Atom bond connectivity index of unicyclic graphs with perfect matchings, Ars Combin. 109 (2013) 321-326.
10. H. Q. Liu, X. F. Pan, J.-M. Xu, On the Randić index of unicyclic conjugated molecules J. Math. Chem. 40 (2006) 135-143.
11. M. J. Morgan, S. Mukwenbi, H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math. 311 (2011) 1229-1234.
12. X. F. Pan, H. Q. Liu and J. M. Xu, Sharp lower bounds for the general Randić index of trees with a given size of matching, MATCH Commun. Math. Comput. Chem. 54 (2005) 465-480.
13. S. Sardana, A. K. Madan, Application of graph Theory: Relationship of molecular connectivity index, Wiener's index and eccentric connectivity index with diuretic activity, MATCH Commun. Math. Comput. Chem. 43 (2001) 85-98.
14. V. Sharma, R. Goswami, A. K. Madan, Eccentric connectivity index: A novel highly discriminating topological descriptor for structure - property and structure activity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273-282.
15. R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley - VCH, Weinheim, 2000.
16. A. M. Yu and F. Tian, On the spectral radius of unicyclic graphs, MATCH Commun. Math. Chem. 51 (2004) 97-109.
17. L. Zhang, H. Hua, The eccentric connectivity index of unicyclic graphs, Int. J. Contemp. Math. Sciences, 5, 46 (2010) 2257-2262.
18. B. Zhou, Z. Du, On eccentric connectivity index, MATCH Commun. Math. Comput. Chem. 63 (2010) 181-198.

[^0]: - Corresponding Author (Email address: yasarnacar@hotmail.com)

 DOI: 10.22052/ijmc.2017.59425.1231

