1. H. Bai, The Grone-Merris conjecture, Trans. Amer. Math. Soc. 363 (2011)
4463−4474.
2. M. Bianchi, A. Cornaro, J. L. Palacios, A. Torriero, Localization of graph
topological indices via majorization technique, in: M. Dehmer, F. Emmert-Streib
(Eds.), Quantitative Graph Theory–Mathematical Foundations and Applications,
CRC Press, Boca Raton, 2015, pp. 35–79.
3. A. Cafure, D. A. Jaume, L. N. Grippo, A. Pastine, M. D. Safe, V. Trevisan, I.
Gutman, Some Results for the (Signless) Laplacian Resolvent, MATCH Commun.
Math. Comput. Chem. 77 (2017) 105–114.
4. K. C. Das, K. Su, M. Liu, Sums of powers of eigenvalues of the Laplacian,
Linear Algebra Appl. 439 (2013) 3561–3575.
5. K. C. Das, K. S. A. Mojallal, I. Gutman, Relations between degrees, conjugate
degrees and graph energies, Linear Algebra Appl. 515 (2017) 24–37.
6. M. Eliasi, A simple approach to order the multiplicative Zagreb indices of
connected graphs, Trans. Comb. 1 (2012) 17–24.
7. R. Grone, R. Merris, The Laplacian spectrum of a graph II, Siam J. Discrete
Math. 7 221−229.
8. I. Gutman, B. Mohar, The quasi-Wiener and the Kirchhoff indices coincide, J.
Chem. Inf. Comput. Sci. 36 (1996) 982–985.
9. I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414
(2006) 29–37.
10. I. Gutman, D. Kiani, M. Mirzakhah, B. Zhou, On incidence energy of a graph,
Linear Algebra Appl. 431 (2009) 1223–1233.
11. I. Gutman, B. Furtula, E. Zogić, E. Glogić, Resolvent energy of graphs, MATCH
Commun. Math. Comput. Chem. 75 (2016) 279–290.
12. D. J. Klein, M. Randić, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
13. J. Liu, B. Liu, A Laplacian-energy like invariant of a graph, MATCH Commun.
Math. Comput. Chem. 59 (2008) 355–372.
14. A. W. Marshall, I. Olkin, Inequalities–Theory of Majorization and its
Applications, Academic Press, London, 1979.
15. J. L. Palacios, Some inequalities for Laplacian descriptors via majorization,
MATCH Commun. Math. Comput. Chem. 77 (2017) 189–194.
16. Y. Yang, On a new cyclicity measure of graphs–The global cyclicity index.
Discr.Appl. Math. 172 (2014) 88–97.
17. B. Zhou, On a sum of powers of the Laplacian eigenvalues of a graph, Linear
Alg. Appl. 429 (2008) 2239–2246.
18. H. Y. Zhu, D. J. Klein, I. Lukovits, Extensions of the Wiener number, J. Chem.
Inf.Comput. Sci. 36 (1996) 420–428.