# On Second Atom-Bond Connectivity Index 

M. Rostami ${ }^{1}$, M. Sohrabi-HAGHIGHAT ${ }^{\mathbf{2}}$ and M. Ghorbani ${ }^{\bullet}{ }^{\bullet 3}$<br>${ }^{1}$ Department of Mathematics, Mahallat Branch, Islamic Azad University, Mahallat, Iran<br>${ }^{2}$ Department of Mathematics, Arak University, Arak, Iran<br>${ }^{3}$ Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran


#### Abstract

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as $A B C(G)=\sum_{u v \in E(G)} \sqrt{\left(d_{u}+d_{v}-2\right) / d_{u} d_{v}}$, where the summation goes over all edges of $G, d_{u}$ and $d_{v}$ are the degrees of the terminal vertices $u$ and $v$ of edge $u v$. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.


Keywords: atom-bond connectivity index, topological index, star-like graph.

## 1. Introduction

All graphs considered in this paper are simple graph and connected. The vertex and edge sets of a graph $G$ are denoted by $V(G)$ and $E(G)$, respectively. A topological index of $G$ is a numeric quantity related to it. In other word, let $\Lambda$ be the class of connected graphs, then a topological index is a function $f: \Lambda \rightarrow R^{+}$, with this property that if $G$ and $H$ are isomorphic, then $f(G)=f(H)$. Topological indices are important tools in prediction of chemical phenomena, that's why several types of topological indices have been defined. One of them is the atom-bond connectivity index (or $A B C$ index for short). This topological index was proposed by Estrada et al. [1] as follows:

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d_{u}+d_{v}-2}{d_{u} d_{v}}},
$$

where the summation goes over all edges $e=u v$ of $G$ and $d_{u}$ and $d_{v}$ are degrees of vertices $u$ and $v$, respectively. For more details about this topological index see references [1-4]. Some upper bounds of $A B C$ index with different parameters have been given in [5]. The properties of $A B C$ index of trees have also been studied in [5-7]. Recently, Graovać and

[^0]Ghorbani, defined a new version of the atom-bond connectivity index namely the second atom-bond connectivity index [8]:

$$
A B C_{2}(G)=\sum_{u v \in E(G)} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}
$$

where $n_{u}$ is the number of vertices closer to vertex $u$ than vertex $v$ and $n_{v}$ defines similarly. Some upper and lower bounds of $A B C_{2}$ index have been studied in [8]. Throughout this paper, our notations are standard and mainly taken from [9]. In this paper, in the next section, we give the necessary definitions and some preliminary results and in Section 3 we introduce some upper and lower bounds of $A B C_{2}$ index with given number of pendent vertices.

## 2. Definitions and Preliminaries

Let $K_{n}, S_{n}$ and $P_{n}$ be the complete graph, star and path on $n$ vertices, respectively. Let also $K_{n, m}$ be the complete bipartite graph on $n+m$ vertices. A tree is said to be star-like if exactly one of its vertices has degree greater than two. By $S(2 r, s), r, s \geq 1$, we denote a star-like tree with diameter less than or equal to 4 , which has a vertex $v_{1}$ of degree $r+s$ and

$$
S(2 r, s) \backslash\left\{v_{1}\right\}=\underbrace{p_{2} \cup \ldots \cup p_{2}}_{r} \cup \underbrace{p_{1} \cup \ldots \cup p_{1}}_{s} .
$$

One can prove that, this tree has $2 r+s+1=n$ vertices. We say that the star-like tree $S(2 r, s)$ has $r+s$ branches, where the lengths of them are $2, \ldots, 2,1, \ldots, 1$ respectively. For $n$, $m \geq 2$, denoted by $S_{m, n}$ means a tree with $n+m$ vertices formed by adding a new edge connecting the centers of the stars $S_{n}$ and $S_{m}$. Finally, the complement $\bar{G}$ of a simple graph $G$ is a simple graph with vertex set $V$ and two vertices are adjacent in $\bar{G}$ if and only if they are not adjacent in $G$.

## 3. Bounds of $\mathrm{ABC}_{2}$ Index

In this section some basic mathematical features of second atom-bond connectivity index are given. A pendent vertex is a vertex of degree one and an edge of a graph is said to be pendant if one of its vertices is a pendent vertex.

Theorem 1. Let $G$ be a connected graph of order $n$ with $m$ edges and $p$ pendent vertices, then

$$
A B C_{2}(G)<p \sqrt{\frac{n-2}{n-1}}+(m-p)
$$

Proof. Assume $n \geq 3$. For a pendant edge $u v$ of graph $G$ we have $n_{u}=1$, and $n_{v}=n-1$. On the other hand, for a non-pendent edge $u v \frac{n_{u}+n_{v}-2}{n_{u} n_{v}}<1$ and so,

$$
\begin{aligned}
A B C_{2}(G) & =\sum_{u v \in E} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}=\sum_{u v \in E, d_{u}=1} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}+\sum_{u v \in E, d_{u}, d_{v} \neq 1} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}} \\
& <p \sqrt{\frac{n-2}{n-1}}+m-p .
\end{aligned}
$$

An easy calculation shows that the Diophantine equation $x+y-2=x y$ does not have positive solution and so this bound is not sharp.

Theorem 2. Let $T$ a tree of order $n>2$ with $p$ pendent vertices. Then

$$
\begin{equation*}
A B C_{2}(T) \leq p \sqrt{\frac{n-2}{n-1}}+\frac{\sqrt{2}}{2}(n-p-1) \tag{1}
\end{equation*}
$$

with equality if and only if $T \cong K_{1, n-1}$ or $T \cong S(2 r, s), n=2 r+s+1$.

Proof. Let $T$ be an arbitrary tree with $n \geq 3$ vertices, for any edge $e=u v, n_{u}+n_{v}=n$. This implies that

$$
A B C_{2}(T)=\sqrt{n-2} \sum_{u v E(T)} \frac{1}{\sqrt{n_{u} n_{v}}} .
$$

Now we assume that the tree $T$ have $p$ pendent vertices. One can easily prove that for pendant edge $e=u v, n_{u}=1, n_{v}=n-1$ and for other edges $2 \leq n_{u}, n_{v} \leq n-2$. Hence

$$
\begin{align*}
A B C_{2}(T) & =\sqrt{n-2}\left(\sum_{u v \in E(T), d_{u}=1} \frac{1}{\sqrt{n_{u} n_{v}}}+\sum_{u v \in E(T), d_{u}, d_{v} \neq 1} \frac{1}{\sqrt{n_{u} n_{v}}}\right) \\
& \leq \sqrt{n-2}\left(\frac{p}{\sqrt{n-1}}+\frac{n-p-1}{\sqrt{2(n-2)}}\right)=p \sqrt{\frac{n-2}{n-1}}+\frac{\sqrt{2}}{2}(n-p-1) . \tag{2}
\end{align*}
$$

Suppose now equality holds in equation (1), hence we should consider two following cases:
Case (a) $p=n-1$, in this case for all edges $e=u v, n_{u}=n-1, n_{v}=1$ and so $T \cong K_{1, n-1}$.
Case (b) $p<n-1$, in this case the diameter of $T$ is strictly greater than 2 . Let $a$ be a pendent vertex. One can easily prove that there is a vertex in $N_{G}(a)$ such as $w$ adjacent to some non-pendent vertices. Since for all edges $e=w x$ incidence with $w, n_{x}=n-2$ and
$n_{w}=2$, we conclude that $T \cong S(2 r, s)$. Conversely, one can prove that in (1) for two graphs $K_{1, n-1}$ and $S(2 r, s)(n=2 r+s)$ equality holds.

Theorem 3. Let $G$ be a graph on $n>2$ vertices, $m$ edges and $p$ pendent vertices. Then

$$
A B C_{2}(G) \geq p \sqrt{\frac{n-2}{n-1}}
$$

with equality if and only if $G \cong K_{1, n-1}$ or $G \cong K_{n}$.

Proof. For each pendant edge $u v, n_{u}=1, n_{v}=n-1$ and for the others $n_{u}, n_{v} \geq 1$. This implies that

$$
\begin{aligned}
A B C_{2}(G) & =\sum_{u v \in E} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}=\sum_{u v \in E, d_{u}=1} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}}+\sum_{u v \in E, d_{u}, d_{v} \neq 1} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}} \\
& =p \sqrt{\frac{n-2}{n-1}}+\sum_{u v \in E, d_{u}, d_{v} \neq 1} \sqrt{\frac{n_{u}+n_{v}-2}{n_{u} n_{v}}} \geq p \sqrt{\frac{n-2}{n-1}}
\end{aligned}
$$

For equality we should consider two cases:
$\operatorname{Case}(\boldsymbol{a}) p=0$, in this case for all edges $e=u v, n_{u}=n_{v}=1$ and this implies $G \cong K_{n}$.
$\operatorname{Case}(\boldsymbol{b}) p=m$, in this case all edges are pendant and so $G \cong K_{1, n-1}$.

Theorem 4. Let $T$ be a tree of order $n>2$ with $p$ pendent vertices. Then

$$
\begin{equation*}
A B C_{2}(T) \geq p \sqrt{\frac{n-2}{n-1}}+\frac{2 \sqrt{n-2}}{n}(n-p-1) \tag{3}
\end{equation*}
$$

with equality if and only if $T \cong K_{1, n-1}$ or $T \cong S_{n / 2, n / 2}$.

Proof. It is clear that in a tree for every edge $u v, n_{u}+n_{v}=n$ and hence

$$
A B C_{2}(T)=\sqrt{n-2} \sum_{u v \in E(T)} \frac{1}{\sqrt{n_{u} n_{v}}}
$$

Now we assume that $T$ have $p$ pendent vertices, then there exist $p$ edges such as $e=u v$ where $n_{u}=1$ and $n_{v}=n-1$. Also, for each non-pendant edge $u v, n_{u} n_{v} \leq n^{2} / 4$ and so

$$
\begin{aligned}
A B C_{2}(T) & =\sqrt{n-2}\left(\sum_{u v \in E(T), d_{u}=1} \frac{1}{\sqrt{n_{u} n_{v}}}+\sum_{u v \in E(T), d_{u}, d_{v} \neq 1} \frac{1}{\sqrt{n_{u} n_{v}}}\right) \\
& =\sqrt{n-2}\left(\frac{p}{\sqrt{n-1}}+\sum_{u v \in E(T), d_{u}, d_{v} \neq 1} \frac{1}{\sqrt{n_{u} n_{v}}}\right) \\
& \geq \sqrt{n-2}\left(\frac{p}{\sqrt{n-1}}+\frac{2}{n}(n-p-1)\right)=p \sqrt{\frac{n-2}{n-1}}+\frac{2 \sqrt{n-2}}{n}(n-p-1) .
\end{aligned}
$$

Let in above formula equality holds, we can consider two following cases:
$\operatorname{Case}(\boldsymbol{a}) p=n-1$, in this case all edges are pendant. Therefore $T \cong K_{1, n-1}$ and so $A B C_{2}(T)=\sqrt{(n-1)(n-2)}$.
$\operatorname{Case}(\boldsymbol{b}) p<n-1$, in this case equality holds if and only if for all non-pendant edges, $n_{u}=$ $n_{v}=n / 2$ and this completes the proof.

Theorem 5. Let $G$ and $\bar{G}$ are connected graphs on $n$ vertices with $p$ and $\bar{p}$ pendent vertices, respectively. Then

$$
A B C_{2}(G)+A B C_{2}(\bar{G})<(p+\bar{p})\left(\sqrt{\frac{n-2}{n-1}}-1\right)+\binom{n}{2} .
$$

Proof. Since $m+\bar{m}=n(n-1) / 2$ by using Theorem 1, we get

$$
\begin{aligned}
A B C_{2}(G)+A B C_{2}(\bar{G}) & <p \sqrt{\frac{n-2}{n-1}}+\bar{p} \sqrt{\frac{n-2}{n-1}}+m-p+\bar{m}-\bar{p} \\
& =(p+\bar{p})\left(\sqrt{\frac{n-2}{n-1}}-1\right)+\binom{n}{2}
\end{aligned}
$$

Corollary 6. We have

$$
A B C_{2}(G)+A B C_{2}(\bar{G}) \geq(p+\bar{p}) \sqrt{\frac{n-2}{n-1}}
$$

## REFERENCES

1. E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes, Indian J. Chem. 37A (1998) 849855.
2. E. Estrada, Atom-bond connectivity and the energetic of branched alkanes, Chem. Phys. Lett. 463 (2008) 422-425.
3. K. C. Das, Atom-bond connectivity index of graphs, Discrete Appl. Math. $\mathbf{1 5 8}$ (2010) 1181-1188.
4. R. Xing, B. Zhou, F. Dong, On atom-bond connectivity index of connected graphs, Technical Report M 2010-04, Mathematics and Mathematics Education National Institute of Education.
5. B. Zhou, R. Xing, On atom-bond connectivity index, Z. Naturforsch., 66A (2011) 61-66.
6. B. Furtula, A. Graovac, D. Vukicevic, Atom-bond connectivity index of trees, Discrete Appl. Math. 157 (2009) 2828-2835.
7. R. Xing, B. Zhou, Z. Du, Further results on atom-bond connectivity index of trees, Discrete Appl. Math. 158 (2010) 1536-1545.
8. A. Graovać, M. Ghorbani, A new version of atom-bond connectivity index, Acta. Chim. Slov. 57 (2010) 609-612.
9. J. A. Bondy, U. S. R. Murty, Graph theory with application, New York: North Holland, 1976.

[^0]:    -Author to whom correspondence should be addressed.(e-mail: m.ghorbani@ srttu.edu).

