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ABSTRACT 

The Wiener index W(G) of a connected graph G is defined as the sum of the distances between 
all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a 
vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of 
eccentricities. Further we extend these results to the self-centered graphs. 
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1. INTRODUCTION 

The Wiener index W(G) of a connected graph G is defined as the sum the distances 
between all unordered pairs of vertices of G. It was put forward by Harold Wiener [1]. The 
Wiener index is a graph invariant intensively studied both in mathematics and chemical 
literature. For details one may refer [2 � 13] and the reference cited there in. 
 Let G be a connected, simple graph with vertex set V(G). The degree of a vertex v in 
G is the number of edges incident to it and is denoted by deg(v). The distance between the 
vertices u and v, denoted by d(u,v), is the length of the shortest path joining them. The 
eccentricity e(v) of a vertex v is the distance to a vertex farthest from v, that is 

e(v) = max{d(u,v) | u  V(G)}. 
 The radius r(G) of a graph G is the minimum eccentricity of the vertices and the 
diameter d(G) of G is the maximum eccentricity. A vertex v is called central vertex of G if 
e(v) = r(G). A graph is called self-centered if every vertex is a central vertex. Thus in a self-
centered graph r(G) = d(G).  An eccentric vertex of a vertex v is a vertex farthest away 
from v. An eccentric path of a vertex v denoted by P(v) is a path of length e(v) joining v and 
its eccentric vertex. There may exists more than one eccentric path for a given vertex. 
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If v1, v2, � , vn are the vertices of graph G then the Wiener index of G is defined as 
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The distance number of a vertex vi of a graph G denoted by d(vi | G) is defined as 





n

j
jii vvdGvd

1

),()|( . 

Therefore  





n

i
i GvdGW

1

)|(
2

1
)( . 

 In this paper we obtain the Wiener index in terms of eccentricities. For graph 
theoretic terminology we refer the book [14]. 
 

2. MAIN RESULTS 

Theorem 2.1: Let G be a connected graph with n vertices, m edges and ei = e(vi), i = 1, 2, 
� , n, then  
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 Equality holds if and only if for every vertex vi of G, if P(vi) is one of the eccentric 
path of vi, then for every vj  V(G) which is not on P(vi), d(vi, vj) ≤ 2. 
 
Proof: Let P(vi) be  one of the eccentric path of vi  V(G). 
Let      A1(vi) = {vj | vj is on eccentric path P(vi) of vi}, 
           A2(vi) = {vj | vj is adjacent to vi and which is not on the eccentric path P(vi) of vi}, 
          A3(vi) = {vj | vj is not adjacent to vi and not on the eccentric path P(vi) of vi}. 
Clearly      A1(vi)  A2(vi)  A3(vi) = V(G)      and 
                |A1(vi)| = ei + 1,       |A2(vi)| = deg(vi) � 1,       |A3(vi)| = n � ei � deg(vi). 

Now  
2

)1(
21),(

)(1






ii
i

vAv
ji

ee
evvd

ij

 , 

           1)(),(
)(2




i
vAv

ji vdegvvd
ij

, 

           ))((2),(
)(3

ii
vAv

ji vdegenvvd
ij




 . 

Therefore, 



Wiener index of graphs in terms of eccentricities                                                                     241 

 

            



n

j
jii vvdGvd

1

),()|(  

                           



)()()( 321

),(),(),(
ijijij vAv

ji
vAv

ji
vAv

ji vvdvvdvvd  

                            ))((21)(
2

)1(
iii

ii vdegenvdeg
ee




  

                           
2

)3(
1)(2


 ii

i

ee
vdegn . 

Therefore, 

                    



n

i
i GvdGW

1

)|(
2

1
)(  

                               









 


n

i

ii
i

ee
vdegn

1 2

)3(
1)(2

2
1

 

                                






 
 



n

i

ii ee
nmn

1

2

2

)3(
22

2

1
 

                                






 
 



n

i

ii ee
mnn

1 2

)3(
2)12(

2

1
. 

For equality, 
 Let G be a graph and P(vi) be one of the eccentric paths of vi V(G). Let A1(vi), 
A2(vi) and A3(vi) be the sets as defined in the first part of the proof of this theorem. 
 Let  d(vi, vj) = 2, where  vj  A3(vi). 
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Conversely, 
 Suppose G is not such graph as defined in the equality part of this theorem. Then 
there exist at least one vertex vj  A3(vi) such that d(vi, vj) ≥ 3. Let A3(vi) be partitioned into 
two sets A31(vi) and A32(vi), where  
A31(vi) = {vj | vj is not adjacent to vi, not on the eccentric path P(vi) of vi and d(vi, vj) = 2} 
A32(vi) = {vj | vj is not adjacent to vi, not on the eccentric path P(vi) of vi and d(vi, vj) ≥ 3}. 
Let |A32(vi)| = l ≥ 1. So, |A31(vi)| = n � ei � deg(vi) � l. 

Therefore 
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 as l ≥ 1, which is a contradiction. 

This contradiction proves the result.                                                                                      

Corollary 2.2: Let G be a self-centered graph with n vertices, m edges and radius r = r(G), 

then 
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 Equality holds if and only if for every vertex vi of a self-centered graph G, if P(vi) is 
one of the eccentric path of vi then for every vj  V(G) which is not on the eccentric path 
P(vi), d(vi, vj) ≤ 2. 
 

Proof: For self-centered graph each vertex has same eccentricity equal to the radius r, that 
is, ei = e(vi) = r, i = 1, 2, � , n. Therefore from Eq. (1) 
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The proof of the equality part is similar to the proof of equality part of Theorem 1.1.           
 

Theorem 2.3: Let G be a connected graph with n vertices and ei = e(vi), i = 1, 2, � , n, then  
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 Equality holds if and only if for every vertex vi of G, if P(vi) is one of the eccentric 
path of vi, then for every vj  V(G) which is not on P(vi), d(vi, vj) = 1. 
 

Proof: Let ei = e(vi), i = 1, 2, � , n and P(vi) be  one of the eccentric path of vi  V(G). 
Let      B1(vi) = {vj | vj is on eccentric path P(vi) of vi}, 
           B2(vi) = {vj | vj is not on the eccentric path P(vi) of vi}. 

Clearly      B1(vi)  B2(vi) = V(G)      and 
                |B1(vi)| = ei + 1,       |B2(vi)| = n � ei � 1. 

Now  
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For equality, 

 Let G be a graph and P(vi) be one of the eccentric paths of vi V(G). Let B1(vi) and 
B2(vi) be the sets as defined in the first part of the proof of this theorem. 
 Let  d(vi, vj) = 1, where  vj  B2(vi). 

Therefore 1),(
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Conversely, 
 Suppose G is not such graph as defined in the equality part of this theorem. Then 
there exist at least one vertex vj  B2(vi) such that d(vi, vj) ≥ 2. Let B2(vi) be partitioned into 
two sets B21(vi) and B22(vi), where  
     B21(vi) = {vj | vj is not on the eccentric path P(vi) of vi and d(vi, vj) = 1} 
     B22(vi) = {vj | vj is not on the eccentric path P(vi) of vi and d(vi, vj) ≥ 2}. 
Let |B22(vi)| = l ≥ 1 
Therefore |B21(vi)| = n � ei � 1 � l. 

Therefore 
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 This is a contradiction. Hence the proof.                                                               
 If G is a self-centered graph then ei = e(vi) = r(G) for all i = 1, 2, � , n. Substituting 
this in Eq. (2) we get following corollary. 
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Corollary 2.4: Let G be a self-centered graph with n vertices and radius r = r(G), then 
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 Equality holds if and only if for every vertex vi of a self-centered graph G, if P(vi) is 
one of the eccentric path of vi then for every vj  V(G) which is not on the eccentric path 
P(vi), d(vi, vj) = 1. 
 

Theorem 2.5: Let G be a connected graph with n vertices, m edges and diam(G) = d. Let ei 

= e(vi), i = 1, 2, � , n, then  
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Equality holds if and only if diam(G)  2. 

Proof: Let P(vi) be  one of the eccentric path of vi  V(G). 
Let      A1(vi) = {vj | vj is on the eccentric path P(vi) of vi}, 
           A2(vi) = {vj | vj is adjacent to vi and which is not on the eccentric path P(vi) of vi}, 
          A3(vi) = {vj | vj is not adjacent to vi and not on the eccentric path P(vi) of vi}. 
Clearly      A1(vi)  A2(vi)  A3(vi) = V(G)      and 
                |A1(vi)| = ei + 1,       |A2(vi)| = deg(vi) � 1,       |A3(vi)| = n � ei � deg(vi). 

Now                                           
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For equality, 
 Let diam(G)  2. 

Case 1: If diam(G) = 1 then G = Kn. Therefore A3(vi) =  and ei = e(vi) = 1, i = 1, 2, � , n. 

Therefore 
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Case 2: If diam(G) = 2, then for vj  A3(vi), d(vi, vj) = 2. 
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Conversely, 
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 The first summation of Eq. (4) contains the distance between vi and the vertices on 
its eccentric path P(vi). Second summation of Eq. (4) contains the distance between vi and 
its neighbor which are not on the eccentric path P(vi). The third summation of Eq. (4) 
contains the distance between vi and a vertex which is neither adjacent to vi nor on the 
eccentric path P(vi). Hence the equality in Eq. (4) holds if and only if d = diam(G)  2. It is 

true for all vi  V(G). Hence diam(G)  2.                                                                             
 
Corollary 2.6: Let G be a self-centered graph with n vertices and radius r = r(G), then   








 


2

)4)(1(
)1(

2

1
)(

mnrr
nrnGW .

 



248                                                          H.S. RAMANE, A. B. GANAGI, H. B. WALIKAR 

 Equality holds if and only if diam(G) ≤ 2. 
 

Proof: Proof follows by substituting ei = e(vi) = r, i = 1, 2, � , n in Eq. (3).                     
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