Wiener index of graphs in terms of eccentricities

H. S. RAMANE ${ }^{1}$, A. B. GANAGI ${ }^{2, \boldsymbol{\bullet}}$, H. B. Walikar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Karnatak University, Dharwad - 580003, India
${ }^{2}$ Department of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum590008, India
${ }^{3}$ Department of Computer Science, Karnatak University, Dharwad - 580003, India

(Received August 15, 2013; Accepted October 26, 2013)

Abstract

The Wiener index $W(G)$ of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.

Keywords: Wiener index, distance, eccentricity, radius, diameter, self-centered graph.

1. Introduction

The Wiener index $W(G)$ of a connected graph G is defined as the sum the distances between all unordered pairs of vertices of G. It was put forward by Harold Wiener [1]. The Wiener index is a graph invariant intensively studied both in mathematics and chemical literature. For details one may refer [2-13] and the reference cited there in.

Let G be a connected, simple graph with vertex set $V(G)$. The degree of a vertex v in G is the number of edges incident to it and is denoted by $\operatorname{deg}(v)$. The distance between the vertices u and v, denoted by $d(u, v)$, is the length of the shortest path joining them. The eccentricity $e(v)$ of a vertex v is the distance to a vertex farthest from v, that is

$$
e(v)=\max \{d(u, v) \mid u \in V(G)\} .
$$

The radius $r(G)$ of a graph G is the minimum eccentricity of the vertices and the diameter $d(G)$ of G is the maximum eccentricity. A vertex v is called central vertex of G if $e(v)=r(G)$. A graph is called self-centered if every vertex is a central vertex. Thus in a selfcentered graph $r(G)=d(G)$. An eccentric vertex of a vertex v is a vertex farthest away from v. An eccentric path of a vertex v denoted by $P(v)$ is a path of length $e(v)$ joining v and its eccentric vertex. There may exists more than one eccentric path for a given vertex.

[^0]If $v_{1}, v_{2}, \ldots, v_{n}$ are the vertices of graph G then the Wiener index of G is defined as

$$
W(G)=\sum_{1 \leq i<j \leq n} d\left(v_{i}, v_{j}\right) .
$$

The distance number of a vertex v_{i} of a graph G denoted by $d\left(v_{i} \mid G\right)$ is defined as

$$
d\left(v_{i} \mid G\right)=\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) .
$$

Therefore

$$
W(G)=\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right)
$$

In this paper we obtain the Wiener index in terms of eccentricities. For graph theoretic terminology we refer the book [14].

2. MAIN Results

Theorem 2.1: Let G be a connected graph with n vertices, m edges and $e_{\mathrm{i}}=\mathrm{e}\left(v_{\mathrm{i}}\right), i=1,2$, \ldots, n, then

$$
\begin{equation*}
W(G) \geq \frac{1}{2}\left[n(2 n-1)-2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] . \tag{1}
\end{equation*}
$$

Equality holds if and only if for every vertex v_{i} of G, if $P\left(v_{i}\right)$ is one of the eccentric path of v_{i}, then for every $v_{j} \in V(G)$ which is not on $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right) \leq 2$.

Proof: Let $P\left(v_{i}\right)$ be one of the eccentric path of $v_{i} \in V(G)$.
Let $\quad A_{1}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is on eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$,
$A_{2}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is adjacent to v_{i} and which is not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$, $A_{3}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not adjacent to v_{i} and not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$.
Clearly $\quad A_{1}\left(v_{i}\right) \cup A_{2}\left(v_{i}\right) \cup A_{3}\left(v_{i}\right)=V(G) \quad$ and

$$
\left|A_{1}\left(v_{i}\right)\right|=e_{i}+1, \quad\left|A_{2}\left(v_{i}\right)\right|=\operatorname{deg}\left(v_{i}\right)-1, \quad\left|A_{3}\left(v_{i}\right)\right|=n-e_{i}-\operatorname{deg}\left(v_{i}\right) .
$$

Now $\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=1+2+\cdots+e_{i}=\frac{e_{i}\left(e_{i}+1\right)}{2}$,

$$
\begin{aligned}
& \sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\operatorname{deg}\left(v_{i}\right)-1, \\
& \sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \geq 2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& \geq \frac{e_{i}\left(e_{i}+1\right)}{2}+\operatorname{deg}\left(v_{i}\right)-1+2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right) \\
& =2 n-\operatorname{deg}\left(v_{i}\right)-1+\frac{e_{i}\left(e_{i}-3\right)}{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n}\left[2 n-\operatorname{deg}\left(v_{i}\right)-1+\frac{e_{i}\left(e_{i}-3\right)}{2}\right] \\
& =\frac{1}{2}\left[2 n^{2}-2 m-n+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] \\
& =\frac{1}{2}\left[n(2 n-1)-2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] .
\end{aligned}
$$

For equality,
Let G be a graph and $P\left(v_{i}\right)$ be one of the eccentric paths of $v_{i} \in V(G)$. Let $A_{1}\left(v_{i}\right)$, $A_{2}\left(v_{i}\right)$ and $A_{3}\left(v_{i}\right)$ be the sets as defined in the first part of the proof of this theorem.

Let $d\left(v_{i}, v_{j}\right)=2$, where $v_{j} \in A_{3}\left(v_{i}\right)$.
Therefore $\sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right)$,

$$
\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\frac{e_{i}\left(e_{i}+1\right)}{2} \quad \text { and } \quad \sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\operatorname{deg}\left(v_{i}\right)-1
$$

Thus

$$
\begin{aligned}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& =\frac{e_{i}\left(e_{i}+1\right)}{2}+\operatorname{deg}\left(v_{i}\right)-1+2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right) \\
& =2 n-\operatorname{deg}\left(v_{i}\right)-1+\frac{e_{i}\left(e_{i}-3\right)}{2} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left[2 n-\operatorname{deg}\left(v_{i}\right)-1+\frac{e_{i}\left(e_{i}-3\right)}{2}\right] \\
& =\frac{1}{2}\left[2 n^{2}-2 m-n+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] \\
& =\frac{1}{2}\left[n(2 n-1)-2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] .
\end{aligned}
$$

Conversely,
Suppose G is not such graph as defined in the equality part of this theorem. Then there exist at least one vertex $v_{j} \in A_{3}\left(v_{i}\right)$ such that $d\left(v_{i}, v_{j}\right) \geq 3$. Let $A_{3}\left(v_{i}\right)$ be partitioned into two sets $A_{31}\left(v_{i}\right)$ and $A_{32}\left(v_{i}\right)$, where
$A_{31}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not adjacent to v_{i}, not on the eccentric path $P\left(v_{i}\right)$ of v_{i} and $\left.d\left(v_{i}, v_{j}\right)=2\right\}$
$A_{32}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not adjacent to v_{i}, not on the eccentric path $P\left(v_{i}\right)$ of v_{i} and $\left.d\left(v_{i}, v_{j}\right) \geq 3\right\}$.
Let $\left|A_{32}\left(v_{i}\right)\right|=l \geq 1$. So, $\left|A_{31}\left(v_{i}\right)\right|=n-e_{i}-\operatorname{deg}\left(v_{i}\right)-l$.
Therefore $\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\frac{e_{i}\left(e_{i}+1\right)}{2}, \sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\operatorname{deg}\left(v_{i}\right)-1$,
$\sum_{v_{j} \in A_{11}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)-l\right)$ and $\sum_{v_{j} \in A_{32}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \geq 3 l$.
Therefore

$$
\begin{aligned}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{31}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{32}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& \geq \frac{e_{i}\left(e_{i}+1\right)}{2}+\operatorname{deg}\left(v_{i}\right)-1+2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)-l\right)+3 l \\
& =2 n-\operatorname{deg}\left(v_{i}\right)-1+\frac{e_{i}\left(e_{i}-3\right)}{2}+l .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n}\left[2 n-\operatorname{deg}\left(v_{i}\right)-1+\frac{e_{i}\left(e_{i}-3\right)}{2}+l\right] \\
& =\frac{1}{2}\left[2 n^{2}-2 m-n+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}+n l\right]
\end{aligned}
$$

$$
\geq \frac{1}{2}\left[n(2 n-1)-2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] \text { as } l \geq 1, \text { which is a contradiction. }
$$

This contradiction proves the result.
Corollary 2.2: Let G be a self-centered graph with n vertices, m edges and radius $r=r(G)$, then $W(G) \geq \frac{1}{2}\left[n(2 n-1)-2 m+\frac{n r(r-3)}{2}\right]$.

Equality holds if and only if for every vertex v_{i} of a self-centered graph G, if $P\left(v_{i}\right)$ is one of the eccentric path of v_{i} then for every $v_{j} \in V(G)$ which is not on the eccentric path $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right) \leq 2$.

Proof: For self-centered graph each vertex has same eccentricity equal to the radius r, that is, $e_{i}=e\left(v_{i}\right)=r, i=1,2, \ldots, n$. Therefore from Eq. (1)

$$
\begin{aligned}
W(G) & \geq \frac{1}{2}\left[n(2 n-1)-2 m+\sum_{i=1}^{n} \frac{r(r-3)}{2}\right] \\
& =\frac{1}{2}\left[n(2 n-1)-2 m+\frac{n r(r-3)}{2}\right]
\end{aligned}
$$

The proof of the equality part is similar to the proof of equality part of Theorem 1.1.

Theorem 2.3: Let G be a connected graph with n vertices and $e_{\mathrm{i}}=\mathrm{e}\left(v_{\mathrm{i}}\right), i=1,2, \ldots, n$, then

$$
\begin{equation*}
W(G) \geq \frac{1}{2}\left[n^{2}+\sum_{i=1}^{n} \frac{\left(e_{i}+1\right)\left(e_{i}-2\right)}{2}\right] . \tag{2}
\end{equation*}
$$

Equality holds if and only if for every vertex v_{i} of G, if $P\left(v_{i}\right)$ is one of the eccentric path of v_{i}, then for every $v_{j} \in V(G)$ which is not on $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right)=1$.

Proof: Let $e_{\mathrm{i}}=\mathrm{e}\left(v_{\mathrm{i}}\right), i=1,2, \ldots, n$ and $P\left(v_{i}\right)$ be one of the eccentric path of $v_{i} \in V(G)$.
Let $\quad B_{1}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is on eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$,
$B_{2}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$.
Clearly $\quad B_{1}\left(v_{i}\right) \cup B_{2}\left(v_{i}\right)=V(G) \quad$ and

$$
\left|B_{1}\left(v_{i}\right)\right|=e_{i}+1, \quad\left|B_{2}\left(v_{i}\right)\right|=n-e_{i}-1 .
$$

Now $\sum_{v_{j} \in B_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=1+2+\cdots+e_{i}=\frac{e_{i}\left(e_{i}+1\right)}{2}$,

$$
\sum_{v_{j} \in B_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \geq 1\left(n-e_{i}-1\right),
$$

Therefore

$$
\begin{aligned}
d\left(v_{i} \mid\right. & \mid G)=\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in B_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in B_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& \geq \frac{e_{i}\left(e_{i}+1\right)}{2}+n-e_{i}-1 \\
& =n+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n}\left[n+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right] \\
& =\frac{1}{2}\left[n^{2}+\sum_{i=1}^{n} \frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right] .
\end{aligned}
$$

For equality,
Let G be a graph and $P\left(v_{i}\right)$ be one of the eccentric paths of $v_{i} \in V(G)$. Let $B_{1}\left(v_{i}\right)$ and $B_{2}\left(v_{i}\right)$ be the sets as defined in the first part of the proof of this theorem.

$$
\text { Let } d\left(v_{i}, v_{j}\right)=1 \text {, where } v_{j} \in B_{2}\left(v_{i}\right) \text {. }
$$

Therefore $\sum_{v_{j} \in B_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=n-e_{i}-1$ and $\sum_{v_{j} \in B_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\frac{e_{i}\left(e_{i}+1\right)}{2}$.
Therefore

$$
\begin{aligned}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in B_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in B_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& =\frac{e_{i}\left(e_{i}+1\right)}{2}+n-e_{i}-1 \\
= & n+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left[n+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right]
\end{aligned}
$$

$$
=\frac{1}{2}\left[n^{2}+\sum_{i=1}^{n} \frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right] .
$$

Conversely,

Suppose G is not such graph as defined in the equality part of this theorem. Then there exist at least one vertex $v_{j} \in B_{2}\left(v_{i}\right)$ such that $d\left(v_{i}, v_{j}\right) \geq 2$. Let $B_{2}\left(v_{i}\right)$ be partitioned into two sets $B_{21}\left(v_{i}\right)$ and $B_{22}\left(v_{i}\right)$, where
$B_{21}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not on the eccentric path $P\left(v_{i}\right)$ of v_{i} and $\left.d\left(v_{i}, v_{j}\right)=1\right\}$
$B_{22}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not on the eccentric path $P\left(v_{i}\right)$ of v_{i} and $\left.d\left(v_{i}, v_{j}\right) \geq 2\right\}$.
Let $\left|B_{22}\left(v_{i}\right)\right|=l \geq 1$
Therefore $\left|B_{21}\left(v_{i}\right)\right|=n-e_{i}-1-l$.
Therefore $\sum_{v_{j} \in B_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\frac{e_{i}\left(e_{i}+1\right)}{2}, \sum_{v_{j} \in B_{21}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=n-e_{i}-1-l$ and $\sum_{v_{j} \in B_{22}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \geq 2 l$.
Therefore

$$
\begin{aligned}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in B_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in B_{21}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in B_{22}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& \geq \frac{e_{i}\left(e_{i}+1\right)}{2}+n-e_{i}-1-l+2 l \\
& =n+l+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& \geq \frac{1}{2} \sum_{i=1}^{n}\left[n+l+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right] \\
& \geq \frac{1}{2} \sum_{i=1}^{n}\left[n+1+\frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right] \text { as } l \geq 1 . \\
& =\frac{1}{2}\left[n(n+1)+\sum_{i=1}^{n} \frac{\left(e_{i}-2\right)\left(e_{i}+1\right)}{2}\right] .
\end{aligned}
$$

This is a contradiction. Hence the proof.
If G is a self-centered graph then $e_{i}=e\left(v_{i}\right)=r(G)$ for all $i=1,2, \ldots, n$. Substituting this in Eq. (2) we get following corollary.

Corollary 2.4: Let G be a self-centered graph with n vertices and radius $r=r(G)$, then $W(G) \geq \frac{1}{2}\left[n^{2}+\frac{n(r+1)(r-2)}{2}\right]$.

Equality holds if and only if for every vertex v_{i} of a self-centered graph G, if $P\left(v_{i}\right)$ is one of the eccentric path of v_{i} then for every $v_{j} \in V(G)$ which is not on the eccentric path $P\left(v_{i}\right), d\left(v_{i}, v_{j}\right)=1$.

Theorem 2.5: Let G be a connected graph with n vertices, m edges and $\operatorname{diam}(G)=d$. Let e_{i} $=\mathrm{e}\left(v_{\mathrm{i}}\right), i=1,2, \ldots, n$, then

$$
\begin{equation*}
W(G) \leq \frac{1}{2}\left[n(n d-1)-(1-d) 2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}+1-2 d\right)}{2}\right] . \tag{3}
\end{equation*}
$$

Equality holds if and only if $\operatorname{diam}(G) \leq 2$.
Proof: Let $P\left(v_{i}\right)$ be one of the eccentric path of $v_{i} \in V(G)$.
Let $\quad A_{1}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$,
$A_{2}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is adjacent to v_{i} and which is not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$, $A_{3}\left(v_{i}\right)=\left\{v_{j} \mid v_{j}\right.$ is not adjacent to v_{i} and not on the eccentric path $P\left(v_{i}\right)$ of $\left.v_{i}\right\}$.
Clearly $\quad A_{1}\left(v_{i}\right) \cup A_{2}\left(v_{i}\right) \cup A_{3}\left(v_{i}\right)=V(G) \quad$ and

$$
\left|A_{1}\left(v_{i}\right)\right|=e_{i}+1, \quad\left|A_{2}\left(v_{i}\right)\right|=\operatorname{deg}\left(v_{i}\right)-1, \quad\left|A_{3}\left(v_{i}\right)\right|=n-e_{i}-\operatorname{deg}\left(v_{i}\right)
$$

Now

$$
\begin{aligned}
& \sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=1+2+\cdots+e_{i}=\frac{e_{i}\left(e_{i}+1\right)}{2}, \\
& \sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=\operatorname{deg}\left(v_{i}\right)-1 \\
& \sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \leq d\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \\
& \leq \frac{e_{i}\left(e_{i}+1\right)}{2}+\operatorname{deg}\left(v_{i}\right)-1+d\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right) \\
& =n d-1+(1-d) \operatorname{deg}\left(v_{i}\right)+\frac{e_{i}\left(e_{i}+1-2 d\right)}{2} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
W & (G)=\frac{1}{2} \sum_{i=1}^{n} d\left(v_{i} \mid G\right) \\
& \leq \frac{1}{2} \sum_{i=1}^{n}\left[n d-1+(1-d) \operatorname{deg}\left(v_{i}\right)+\frac{e_{i}\left(e_{i}+1-2 d\right)}{2}\right] \\
= & \frac{1}{2}\left[n(n d-1)+(1-d) 2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}+1-2 d\right)}{2}\right] \text { since } \\
& \sum_{i=1}^{n} \operatorname{deg}\left(v_{i}\right)=2 m .
\end{aligned}
$$

For equality,
Let $\operatorname{diam}(G) \leq 2$.
Case 1: If $\operatorname{diam}(G)=1$ then $G=K_{n}$. Therefore $A_{3}\left(v_{i}\right)=\Phi$ and $e_{i}=e\left(v_{i}\right)=1, i=1,2, \ldots, n$.
Therefore $W(G)=\frac{1}{2}\left[n(n-1)+\sum_{i=1}^{n} \frac{1(1+1-2)}{2}\right]=\frac{n(n-1)}{2}$.
Case 2: If $\operatorname{diam}(G)=2$, then for $v_{j} \in A_{3}\left(v_{i}\right), d\left(v_{i}, v_{j}\right)=2$.
Therefore $\sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)=2\left(n-e_{i}-\operatorname{deg}\left(v_{i}\right)\right)$.
Hence $W(G)=\frac{1}{2}\left[n(n d-1)+(1-d) 2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}+1-2 d\right)}{2}\right]$

$$
=\frac{1}{2}\left[n(2 n-1)-2 m+\sum_{i=1}^{n} \frac{e_{i}\left(e_{i}-3\right)}{2}\right] .
$$

Conversely,

$$
\begin{align*}
d\left(v_{i} \mid G\right) & =\sum_{j=1}^{n} d\left(v_{i}, v_{j}\right) \\
& =\sum_{v_{j} \in A_{1}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{2}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right)+\sum_{v_{j} \in A_{3}\left(v_{i}\right)} d\left(v_{i}, v_{j}\right) \tag{4}
\end{align*}
$$

The first summation of Eq. (4) contains the distance between v_{i} and the vertices on its eccentric path $P\left(v_{i}\right)$. Second summation of Eq. (4) contains the distance between v_{i} and its neighbor which are not on the eccentric path $P\left(v_{i}\right)$. The third summation of Eq. (4) contains the distance between v_{i} and a vertex which is neither adjacent to v_{i} nor on the eccentric path $P\left(v_{i}\right)$. Hence the equality in Eq. (4) holds if and only if $d=\operatorname{diam}(G) \leq 2$. It is true for all $v_{i} \in V(G)$. Hence $\operatorname{diam}(G) \leq 2$.

Corollary 2.6: Let G be a self-centered graph with n vertices and radius $r=r(G)$, then

$$
W(G) \leq \frac{1}{2}\left[n(n r-1)-\frac{(r-1)(n r+4 m)}{2}\right] .
$$

Equality holds if and only if $\operatorname{diam}(G) \leq 2$.
Proof: Proof follows by substituting $e_{i}=e\left(v_{i}\right)=r, i=1,2, \ldots, n$ in Eq. (3).

References

1. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17 - 20.
2. F. Buckley, F. Harary, Distances in Graphs, Addison-Wesley, Redwood, 1990.
3. I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the Theory of the Wiener number, Indian J. Chem., 32A (1993), 651 - 661.
4. R. C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput., 24 (1997), $65-84$.
5. A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and Applications, Acta Appl. Math., 66 (2001), 211 - 249.
6. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math., 72(2002), 247 - 294.
7. I. Gutman, G. Zenkevich, Wiener index and vibrational energy, Z. Naturforch, 57A(2002), 824 - 828.
8. H. B. Walikar, H. S. Ramane, V. S. Shigehalli, Wiener number of Dendrimers, In: Proc. National Conf. on Mathematical and Computational Models, (Eds. R. Nadarajan and G. Arulmozhi), Allied Publishers, New Delhi, 2003, pp. 361-368.
9. H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, MATCH Comm. Math. Comp. Chem., 50 (2004), 117 - 132.
10. G. C. Garcia, I. L. Ruiz, M. A. Gomez-Nieto, J. A. Doncel, A. G. Plaza, From Wiener index to molecule, J. Chem. Inf. Model., 45 (2005), 231-238.
11. H. Liu, X. F. Pan, On the Wiener index of trees with fixed diameter, MATCH Commun. Math. Comput. Chem., 60 (2008), $85-94$.
12. S. Wang, X. Guo, Trees with extremal Wiener indices, MATCH Commun. Math. Comput. Chem., 60 (2008), $609-622$.
13. A. Chon, F. Zhang, Wiener index and perfect matching in random phenylene chains, MATCH Commun. Math. Comput. Chem., 61 (2009), 623 - 630.
14. K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices of edges and diameter, MATCH Commun. Math. Comput. Chem., 64 (2010), 647 660.

[^0]: ${ }^{\bullet}$ Corresponding author (Email: abganagi@yahoo.co.in)

