IJMC

Wiener index of graphs in terms of eccentricities

H. S. RAMANE¹, A. B. GANAGI^{2,•}, H. B. WALIKAR³

¹Department of Mathematics, Karnatak University, Dharwad – 580003, India ²Department of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum– 590008, India

³Department of Computer Science, Karnatak University, Dharwad – 580003, India

(Received August 15, 2013; Accepted October 26, 2013)

ABSTRACT

The Wiener index W(G) of a connected graph G is defined as the sum of the distances between all unordered pairs of vertices of G. The eccentricity of a vertex v in G is the distance to a vertex farthest from v. In this paper we obtain the Wiener index of a graph in terms of eccentricities. Further we extend these results to the self-centered graphs.

Keywords: Wiener index, distance, eccentricity, radius, diameter, self-centered graph.

1. INTRODUCTION

The Wiener index W(G) of a connected graph *G* is defined as the sum the distances between all unordered pairs of vertices of *G*. It was put forward by Harold Wiener [1]. The Wiener index is a graph invariant intensively studied both in mathematics and chemical literature. For details one may refer [2 – 13] and the reference cited there in.

Let *G* be a connected, simple graph with vertex set V(G). The degree of a vertex *v* in *G* is the number of edges incident to it and is denoted by deg(v). The distance between the vertices *u* and *v*, denoted by d(u,v), is the length of the shortest path joining them. The eccentricity e(v) of a vertex *v* is the distance to a vertex farthest from *v*, that is

$$e(v) = \max\{d(u,v) \mid u \in V(G)\}.$$

The radius r(G) of a graph *G* is the minimum eccentricity of the vertices and the diameter d(G) of *G* is the maximum eccentricity. A vertex *v* is called central vertex of *G* if e(v) = r(G). A graph is called self-centered if every vertex is a central vertex. Thus in a self-centered graph r(G) = d(G). An eccentric vertex of a vertex *v* is a vertex farthest away from *v*. An eccentric path of a vertex *v* denoted by P(v) is a path of length e(v) joining *v* and its eccentric vertex. There may exists more than one eccentric path for a given vertex.

[•]Corresponding author (Email: *abganagi@yahoo.co.in*)

If v_1, v_2, \ldots, v_n are the vertices of graph G then the Wiener index of G is defined as

$$W(G) = \sum_{1 \le i < j \le n} d(v_i, v_j).$$

The distance number of a vertex v_i of a graph G denoted by $d(v_i | G)$ is defined as

$$d(v_i | G) = \sum_{j=1}^n d(v_i, v_j).$$

Therefore

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G).$$

In this paper we obtain the Wiener index in terms of eccentricities. For graph theoretic terminology we refer the book [14].

2. MAIN RESULTS

Theorem 2.1: Let G be a connected graph with n vertices, m edges and $e_i = e(v_i)$, i = 1, 2, ..., n, then

$$W(G) \ge \frac{1}{2} \left[n(2n-1) - 2m + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} \right].$$
(1)

Equality holds if and only if for every vertex v_i of G, if $P(v_i)$ is one of the eccentric path of v_i , then for every $v_i \in V(G)$ which is not on $P(v_i)$, $d(v_i, v_i) \leq 2$.

Proof: Let $P(v_i)$ be one of the eccentric path of $v_i \in V(G)$. Let $A_1(v_i) = \{v_j \mid v_j \text{ is on eccentric path } P(v_i) \text{ of } v_i\},$ $A_2(v_i) = \{v_j \mid v_j \text{ is adjacent to } v_i \text{ and which is not on the eccentric path } P(v_i) \text{ of } v_i\},$ $A_3(v_i) = \{v_j \mid v_j \text{ is not adjacent to } v_i \text{ and not on the eccentric path } P(v_i) \text{ of } v_i\}.$

Clearly $A_1(v_i) \cup A_2(v_i) \cup A_3(v_i) = V(G)$ and $|A_1(v_i)| = e_i + 1, \quad |A_2(v_i)| = deg(v_i) - 1, \quad |A_3(v_i)| = n - e_i - deg(v_i).$ Now $\sum_{v_j \in A_1(v_i)} d(v_i, v_j) = 1 + 2 + \dots + e_i = \frac{e_i(e_i + 1)}{2},$ $\sum_{v_j \in A_2(v_i)} d(v_i, v_j) = deg(v_i) - 1,$ $\sum_{v_j \in A_3(v_i)} d(v_i, v_j) \ge 2(n - e_i - deg(v_i)).$

Therefore,

$$d(v_i | G) = \sum_{j=1}^n d(v_i, v_j)$$

= $\sum_{v_j \in A_1(v_i)} d(v_i, v_j) + \sum_{v_j \in A_2(v_i)} d(v_i, v_j) + \sum_{v_j \in A_3(v_i)} d(v_i, v_j)$
\ge $\frac{e_i(e_i + 1)}{2} + deg(v_i) - 1 + 2(n - e_i - deg(v_i))$

$$= 2n - deg(v_i) - 1 + \frac{e_i(e_i - 3)}{2}.$$

Therefore,

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G)$$

$$\geq \frac{1}{2} \sum_{i=1}^{n} \left[2n - deg(v_i) - 1 + \frac{e_i(e_i - 3)}{2} \right]$$

$$= \frac{1}{2} \left[2n^2 - 2m - n + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} \right]$$

$$= \frac{1}{2} \left[n(2n - 1) - 2m + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} \right].$$

For equality,

Let *G* be a graph and $P(v_i)$ be one of the eccentric paths of $v_i \in V(G)$. Let $A_1(v_i)$, $A_2(v_i)$ and $A_3(v_i)$ be the sets as defined in the first part of the proof of this theorem.

Let $d(v_i, v_j) = 2$, where $v_j \in A_3(v_i)$. Therefore $\sum_{v_j \in A_3(v_i)} d(v_i, v_j) = 2(n - e_i - deg(v_i))$, $\sum_{v_j \in A_1(v_i)} d(v_i, v_j) = \frac{e_i(e_i + 1)}{2}$ and $\sum_{v_j \in A_2(v_i)} d(v_i, v_j) = deg(v_i) - 1$

Thus

$$\begin{aligned} d(v_i \mid G) &= \sum_{j=1}^n d(v_i, v_j) \\ &= \sum_{v_j \in A_1(v_i)} d(v_i, v_j) + \sum_{v_j \in A_2(v_i)} d(v_i, v_j) + \sum_{v_j \in A_3(v_i)} d(v_i, v_j) \\ &= \frac{e_i(e_i + 1)}{2} + deg(v_i) - 1 + 2(n - e_i - deg(v_i)) \\ &= 2n - deg(v_i) - 1 + \frac{e_i(e_i - 3)}{2}. \end{aligned}$$

Hence

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G)$$

= $\frac{1}{2} \sum_{i=1}^{n} \left[2n - deg(v_i) - 1 + \frac{e_i(e_i - 3)}{2} \right]$
= $\frac{1}{2} \left[2n^2 - 2m - n + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} \right]$
= $\frac{1}{2} \left[n(2n-1) - 2m + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} \right].$

Conversely,

Suppose *G* is not such graph as defined in the equality part of this theorem. Then there exist at least one vertex $v_j \in A_3(v_i)$ such that $d(v_i, v_j) \ge 3$. Let $A_3(v_i)$ be partitioned into two sets $A_{31}(v_i)$ and $A_{32}(v_i)$, where

 $A_{31}(v_i) = \{v_j \mid v_j \text{ is not adjacent to } v_i, \text{ not on the eccentric path } P(v_i) \text{ of } v_i \text{ and } d(v_i, v_j) = 2\}$ $A_{32}(v_i) = \{v_j \mid v_j \text{ is not adjacent to } v_i, \text{ not on the eccentric path } P(v_i) \text{ of } v_i \text{ and } d(v_i, v_j) \ge 3\}.$ Let $|A_{32}(v_i)| = l \ge 1$. So, $|A_{31}(v_i)| = n - e_i - deg(v_i) - l$.

Therefore
$$\sum_{v_j \in A_1(v_i)} d(v_i, v_j) = \frac{e_i(e_i+1)}{2}$$
, $\sum_{v_j \in A_2(v_i)} d(v_i, v_j) = deg(v_i) - 1$,
 $\sum_{v_j \in A_{31}(v_i)} d(v_i, v_j) = 2(n - e_i - deg(v_i) - l)$ and $\sum_{v_j \in A_{32}(v_i)} d(v_i, v_j) \ge 3l$.

Therefore

$$\begin{split} d(v_i \mid G) &= \sum_{j=1}^n d(v_i, v_j) \\ &= \sum_{v_j \in A_1(v_i)} d(v_i, v_j) + \sum_{v_j \in A_2(v_i)} d(v_i, v_j) + \sum_{v_j \in A_{31}(v_i)} d(v_i, v_j) + \sum_{v_j \in A_{32}(v_i)} d(v_i, v_j) \\ &\geq \frac{e_i(e_i + 1)}{2} + deg(v_i) - 1 + 2(n - e_i - deg(v_i) - l) + 3l \\ &= 2n - deg(v_i) - 1 + \frac{e_i(e_i - 3)}{2} + l \,. \end{split}$$

Therefore

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G)$$

$$\geq \frac{1}{2} \sum_{i=1}^{n} \left[2n - deg(v_i) - 1 + \frac{e_i(e_i - 3)}{2} + l \right]$$

$$= \frac{1}{2} \left[2n^2 - 2m - n + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} + nl \right]$$

$$\geq \frac{1}{2} \left[n(2n-1) - 2m + \sum_{i=1}^{n} \frac{e_i(e_i - 3)}{2} \right] \text{ as } l \geq 1, \text{ which is a contradiction.}$$

This contradiction proves the result.

Corollary 2.2: Let *G* be a self-centered graph with *n* vertices, *m* edges and radius r = r(G), then $W(G) \ge \frac{1}{2} \left[n(2n-1) - 2m + \frac{nr(r-3)}{2} \right]$.

Equality holds if and only if for every vertex v_i of a self-centered graph G, if $P(v_i)$ is one of the eccentric path of v_i then for every $v_j \in V(G)$ which is not on the eccentric path $P(v_i)$, $d(v_i, v_j) \leq 2$.

Proof: For self-centered graph each vertex has same eccentricity equal to the radius *r*, that is, $e_i = e(v_i) = r$, i = 1, 2, ..., n. Therefore from Eq. (1)

$$W(G) \ge \frac{1}{2} \left[n(2n-1) - 2m + \sum_{i=1}^{n} \frac{r(r-3)}{2} \right]$$
$$= \frac{1}{2} \left[n(2n-1) - 2m + \frac{nr(r-3)}{2} \right]$$

The proof of the equality part is similar to the proof of equality part of Theorem 1.1. \Box

Theorem 2.3: Let *G* be a connected graph with *n* vertices and $e_i = e(v_i)$, i = 1, 2, ..., n, then

$$W(G) \ge \frac{1}{2} \left[n^2 + \sum_{i=1}^n \frac{(e_i + 1)(e_i - 2)}{2} \right].$$
 (2)

Equality holds if and only if for every vertex v_i of G, if $P(v_i)$ is one of the eccentric path of v_i , then for every $v_j \in V(G)$ which is not on $P(v_i)$, $d(v_i, v_j) = 1$.

Proof: Let $e_i = e(v_i)$, i = 1, 2, ..., n and $P(v_i)$ be one of the eccentric path of $v_i \in V(G)$. Let $B_1(v_i) = \{v_j \mid v_j \text{ is on eccentric path } P(v_i) \text{ of } v_i\},$ $B_2(v_i) = \{v_i \mid v_i \text{ is not on the eccentric path } P(v_i) \text{ of } v_i\}.$

Clearly $B_1(v_i) \cup B_2(v_i) = V(G)$ and $|B_1(v_i)| = e_i + 1, \quad |B_2(v_i)| = n - e_i - 1.$ Now $\sum_{v_j \in B_1(v_i)} d(v_i, v_j) = 1 + 2 + \dots + e_i = \frac{e_i(e_i + 1)}{2},$ $\sum_{v_i \in B_2(v_i)} d(v_i, v_j) \ge 1(n - e_i - 1),$

Therefore

$$\begin{split} d(v_i \mid G) &= \sum_{j=1}^n d(v_i, v_j) \\ &= \sum_{v_j \in B_1(v_i)} d(v_i, v_j) + \sum_{v_j \in B_2(v_i)} d(v_i, v_j) \\ &\geq \frac{e_i(e_i + 1)}{2} + n - e_i - 1 \\ &= n + \frac{(e_i - 2)(e_i + 1)}{2}. \end{split}$$

Therefore

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G)$$

$$\geq \frac{1}{2} \sum_{i=1}^{n} \left[n + \frac{(e_i - 2)(e_i + 1)}{2} \right]$$

$$= \frac{1}{2} \left[n^2 + \sum_{i=1}^{n} \frac{(e_i - 2)(e_i + 1)}{2} \right].$$

For equality,

Let *G* be a graph and $P(v_i)$ be one of the eccentric paths of $v_i \in V(G)$. Let $B_1(v_i)$ and $B_2(v_i)$ be the sets as defined in the first part of the proof of this theorem.

Let $d(v_i, v_j) = 1$, where $v_j \in B_2(v_i)$.

Therefore $\sum_{v_j \in B_2(v_i)} d(v_i, v_j) = n - e_i - 1$ and $\sum_{v_j \in B_1(v_i)} d(v_i, v_j) = \frac{e_i(e_i + 1)}{2}$.

Therefore

$$d(v_i | G) = \sum_{j=1}^n d(v_i, v_j)$$

= $\sum_{v_j \in B_1(v_i)} d(v_i, v_j) + \sum_{v_j \in B_2(v_i)} d(v_i, v_j)$
= $\frac{e_i(e_i + 1)}{2} + n - e_i - 1$
= $n + \frac{(e_i - 2)(e_i + 1)}{2}$.

Therefore

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G)$$
$$= \frac{1}{2} \sum_{i=1}^{n} \left[n + \frac{(e_i - 2)(e_i + 1)}{2} \right]$$

$$=\frac{1}{2}\left[n^{2}+\sum_{i=1}^{n}\frac{(e_{i}-2)(e_{i}+1)}{2}\right].$$

Conversely,

Suppose *G* is not such graph as defined in the equality part of this theorem. Then there exist at least one vertex $v_j \in B_2(v_i)$ such that $d(v_i, v_j) \ge 2$. Let $B_2(v_i)$ be partitioned into two sets $B_{21}(v_i)$ and $B_{22}(v_i)$, where

 $B_{21}(v_i) = \{v_j \mid v_j \text{ is not on the eccentric path } P(v_i) \text{ of } v_i \text{ and } d(v_i, v_j) = 1\}$ $B_{22}(v_i) = \{v_j \mid v_j \text{ is not on the eccentric path } P(v_i) \text{ of } v_i \text{ and } d(v_i, v_j) \ge 2\}.$ Let $|B_{22}(v_i)| = l \ge 1$ Therefore $|B_{21}(v_i)| = n - e_i - 1 - l$.
Therefore $\sum_{v_j \in B_1(v_i)} d(v_i, v_j) = \frac{e_i(e_i + 1)}{2}, \sum_{v_j \in B_{21}(v_i)} d(v_i, v_j) = n - e_i - 1 - l$ and $\sum_{v_j \in B_{22}(v_i)} d(v_i, v_j) \ge 2l$.

Therefore

$$\begin{split} d(v_i \mid G) &= \sum_{j=1}^n d(v_i, v_j) \\ &= \sum_{v_j \in B_1(v_i)} d(v_i, v_j) + \sum_{v_j \in B_{21}(v_i)} d(v_i, v_j) + \sum_{v_j \in B_{22}(v_i)} d(v_i, v_j) \\ &\geq \frac{e_i(e_i + 1)}{2} + n - e_i - 1 - l + 2l \\ &= n + l + \frac{(e_i - 2)(e_i + 1)}{2}. \end{split}$$

Therefore

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i \mid G)$$

$$\geq \frac{1}{2} \sum_{i=1}^{n} \left[n + l + \frac{(e_i - 2)(e_i + 1)}{2} \right]$$

$$\geq \frac{1}{2} \sum_{i=1}^{n} \left[n + 1 + \frac{(e_i - 2)(e_i + 1)}{2} \right] \text{ as } l \geq 1.$$

$$= \frac{1}{2} \left[n(n+1) + \sum_{i=1}^{n} \frac{(e_i - 2)(e_i + 1)}{2} \right].$$

This is a contradiction. Hence the proof.

If *G* is a self-centered graph then $e_i = e(v_i) = r(G)$ for all i = 1, 2, ..., n. Substituting this in Eq. (2) we get following corollary.

Corollary 2.4: Let *G* be a self-centered graph with *n* vertices and radius r = r(G), then $W(G) \ge \frac{1}{2} \left[n^2 + \frac{n(r+1)(r-2)}{2} \right].$

Equality holds if and only if for every vertex v_i of a self-centered graph *G*, if $P(v_i)$ is one of the eccentric path of v_i then for every $v_j \in V(G)$ which is not on the eccentric path $P(v_i)$, $d(v_i, v_j) = 1$.

Theorem 2.5: Let *G* be a connected graph with *n* vertices, *m* edges and diam(G) = d. Let $e_i = e(v_i), i = 1, 2, ..., n$, then

$$W(G) \le \frac{1}{2} \left[n(nd-1) - (1-d)2m + \sum_{i=1}^{n} \frac{e_i(e_i+1-2d)}{2} \right].$$
(3)

Equality holds if and only if $diam(G) \le 2$.

Proof: Let $P(v_i)$ be one of the eccentric path of $v_i \in V(G)$.

Let $A_1(v_i) = \{v_j \mid v_j \text{ is on the eccentric path } P(v_i) \text{ of } v_i\},\$ $A_2(v_i) = \{v_i \mid v_i \text{ is adjacent to } v_i \text{ and which is not on the eccentric path } P(v_i) \text{ of } v_i\},\$

 $A_3(v_i) = \{v_j \mid v_j \text{ is not adjacent to } v_i \text{ and not on the eccentric path } P(v_i) \text{ of } v_i\}.$ Clearly $A_1(v_i) \cup A_2(v_i) \cup A_3(v_i) = V(G)$ and

$$\begin{aligned} |A_1(v_i)| &= e_i + 1, \qquad |A_2(v_i)| = deg(v_i) - 1, \qquad |A_3(v_i)| = n - e_i - deg(v_i). \\ \text{Now} \\ \sum_{v_j \in A_i(v_i)} d(v_i, v_j) &= 1 + 2 + \dots + e_i = \frac{e_i(e_i + 1)}{2}, \\ \sum_{v_j \in A_2(v_i)} d(v_i, v_j) &= deg(v_i) - 1, \\ \sum_{v_j \in A_3(v_i)} d(v_i, v_j) &\leq d(n - e_i - deg(v_i)) \end{aligned}$$

Therefore

$$\begin{aligned} d(v_i \mid G) &= \sum_{j=1}^n d(v_i, v_j) \\ &= \sum_{v_j \in A_1(v_i)} d(v_i, v_j) + \sum_{v_j \in A_2(v_i)} d(v_i, v_j) + \sum_{v_j \in A_3(v_i)} d(v_i, v_j) \\ &\leq \frac{e_i(e_i + 1)}{2} + deg(v_i) - 1 + d(n - e_i - deg(v_i)) \\ &= nd - 1 + (1 - d)deg(v_i) + \frac{e_i(e_i + 1 - 2d)}{2}. \end{aligned}$$

Therefore

$$W(G) = \frac{1}{2} \sum_{i=1}^{n} d(v_i | G)$$

$$\leq \frac{1}{2} \sum_{i=1}^{n} \left[nd - 1 + (1 - d)deg(v_i) + \frac{e_i(e_i + 1 - 2d)}{2} \right]$$

$$= \frac{1}{2} \left[n(nd - 1) + (1 - d)2m + \sum_{i=1}^{n} \frac{e_i(e_i + 1 - 2d)}{2} \right] \text{ since}$$

$$\sum_{i=1}^{n} deg(v_i) = 2m.$$

For equality,

Let $diam(G) \le 2$. <u>Case 1:</u> If diam(G) = 1 then $G = K_n$. Therefore $A_3(v_i) = \Phi$ and $e_i = e(v_i) = 1, i = 1, 2, ..., n$. Therefore $W(G) = \frac{1}{2} \left[n(n-1) + \sum_{i=1}^n \frac{1(1+1-2)}{2} \right] = \frac{n(n-1)}{2}$. <u>Case 2:</u> If diam(G) = 2, then for $v_j \in A_3(v_i), d(v_i, v_j) = 2$. Therefore $\sum_{v_j \in A_3(v_i)} d(v_i, v_j) = 2(n - e_i - deg(v_i))$. Hence $W(G) = \frac{1}{2} \left[n(nd-1) + (1-d)2m + \sum_{i=1}^n \frac{e_i(e_i + 1 - 2d)}{2} \right]$ $= \frac{1}{2} \left[n(2n-1) - 2m + \sum_{i=1}^n \frac{e_i(e_i - 3)}{2} \right]$.

Conversely,

$$d(v_i | G) = \sum_{j=1}^n d(v_i, v_j)$$

= $\sum_{v_j \in A_1(v_i)} d(v_i, v_j) + \sum_{v_j \in A_2(v_i)} d(v_i, v_j) + \sum_{v_j \in A_3(v_i)} d(v_i, v_j)$ (4)

The first summation of Eq. (4) contains the distance between v_i and the vertices on its eccentric path $P(v_i)$. Second summation of Eq. (4) contains the distance between v_i and its neighbor which are not on the eccentric path $P(v_i)$. The third summation of Eq. (4) contains the distance between v_i and a vertex which is neither adjacent to v_i nor on the eccentric path $P(v_i)$. Hence the equality in Eq. (4) holds if and only if $d = diam(G) \le 2$. It is true for all $v_i \in V(G)$. Hence $diam(G) \le 2$.

Corollary 2.6: Let *G* be a self-centered graph with *n* vertices and radius r = r(G), then

$$W(G) \le \frac{1}{2} \left[n(nr-1) - \frac{(r-1)(nr+4m)}{2} \right].$$

Equality holds if and only if $diam(G) \le 2$.

Proof: Proof follows by substituting $e_i = e(v_i) = r$, i = 1, 2, ..., n in Eq. (3).

REFERENCES

- 1. H. Wiener, Structural determination of paraffin boiling points, *J. Amer. Chem. Soc.*, **69** (1947), 17 20.
- 2. F. Buckley, F. Harary, *Distances in Graphs*, Addison-Wesley, Redwood, 1990.
- 3. I. Gutman, Y. N. Yeh, S. L. Lee, Y. L. Luo, Some recent results in the Theory of the Wiener number, *Indian J. Chem.*, **32A** (1993), 651 661.
- 4. R. C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput., 24 (1997), 65 84.
- 5. A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and Applications, *Acta Appl. Math.*, **66** (2001), 211 249.
- 6. A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal systems, *Acta Appl. Math.*, **72**(2002), 247 294.
- I. Gutman, G. Zenkevich, Wiener index and vibrational energy, Z. Naturforch, 57A(2002), 824 – 828.
- H. B. Walikar, H. S. Ramane, V. S. Shigehalli, Wiener number of Dendrimers, In: *Proc. National Conf. on Mathematical and Computational Models*, (Eds. R. Nadarajan and G. Arulmozhi), Allied Publishers, New Delhi, 2003, pp. 361 – 368.
- 9. H. B. Walikar, V. S. Shigehalli, H. S. Ramane, Bounds on the Wiener number of a graph, *MATCH Comm. Math. Comp. Chem.*, **50** (2004), 117 132.
- 10. G. C. Garcia, I. L. Ruiz, M. A. Gomez-Nieto, J. A. Doncel, A. G. Plaza, From Wiener index to molecule, *J. Chem. Inf. Model.*, **45** (2005), 231 238.
- 11. H. Liu, X. F. Pan, On the Wiener index of trees with fixed diameter, *MATCH Commun. Math. Comput. Chem.*, **60** (2008), 85 94.
- 12. S. Wang, X. Guo, Trees with extremal Wiener indices, *MATCH Commun. Math. Comput. Chem.*, **60** (2008), 609 622.
- 13. A. Chon, F. Zhang, Wiener index and perfect matching in random phenylene chains, *MATCH Commun. Math. Comput. Chem.*, **61** (2009), 623 630.
- K. C. Das, I. Gutman, Estimating the Wiener index by means of number of vertices of edges and diameter, *MATCH Commun. Math. Comput. Chem.*, **64** (2010), 647 660.