A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
GHORBANI, M., & BANI-ASADI, E. (2013). Counting the Number of Spanning Trees of Graphs. Iranian Journal of Mathematical Chemistry, 4(1), 111-121. doi: 10.22052/ijmc.2013.5285
MLA
M. GHORBANI; E. BANI-ASADI. "Counting the Number of Spanning Trees of Graphs", Iranian Journal of Mathematical Chemistry, 4, 1, 2013, 111-121. doi: 10.22052/ijmc.2013.5285
HARVARD
GHORBANI, M., BANI-ASADI, E. (2013). 'Counting the Number of Spanning Trees of Graphs', Iranian Journal of Mathematical Chemistry, 4(1), pp. 111-121. doi: 10.22052/ijmc.2013.5285
VANCOUVER
GHORBANI, M., BANI-ASADI, E. Counting the Number of Spanning Trees of Graphs. Iranian Journal of Mathematical Chemistry, 2013; 4(1): 111-121. doi: 10.22052/ijmc.2013.5285