The Wiener index is the sum of distances between all pairs of vertices in a connected graph. In this paper, explicit expressions for the expected value of the Wiener index of three types of random pentagonal chains (cf. Figure 1) are obtained.
YONG WANG, H., QIN, J., & GUTMAN, I. (2013). Wiener Numbers of Random Pentagonal Chains. Iranian Journal of Mathematical Chemistry, 4(1), 59-76. doi: 10.22052/ijmc.2013.5282
MLA
H. YONG WANG; J. QIN; I. GUTMAN. "Wiener Numbers of Random Pentagonal Chains", Iranian Journal of Mathematical Chemistry, 4, 1, 2013, 59-76. doi: 10.22052/ijmc.2013.5282
HARVARD
YONG WANG, H., QIN, J., GUTMAN, I. (2013). 'Wiener Numbers of Random Pentagonal Chains', Iranian Journal of Mathematical Chemistry, 4(1), pp. 59-76. doi: 10.22052/ijmc.2013.5282
VANCOUVER
YONG WANG, H., QIN, J., GUTMAN, I. Wiener Numbers of Random Pentagonal Chains. Iranian Journal of Mathematical Chemistry, 2013; 4(1): 59-76. doi: 10.22052/ijmc.2013.5282