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ABSTRACT 

In this paper, we investigate infinite product representation of the solution of a Sturm-
Liouville equation with an indefinite weight function which has two zeros and/or singularities 
in a finite interval. First, by using of the  asymptotic estimates provided in [W. Eberhard, G. 
Freiling,  K. Wilcken-Stoeber, Indefinite eigenvalue problems with several  singular points 
and turning points, Math. Nachr. 229, 51-71 (2001)] for a special fundamental system of the 
solutions of Sturm-Liouville equation, we obtain the asymptotic behavior of it’s solutions and 
eigenvalues, then we obtain the infinite product representation of solution of the equation. 
 
Keywords: Singularities, turning points, Sturm-Liouville problem, non-definite problem, 
infinite products, Hadamard's theorem. 

 
 

1 INTRODUCTION 

We consider the Sturm-Liouville equation of the form 
 

                        
,10,0))()(( 2  tytqty                                                           (1) 

 

with initial conditions ,0),0(,1),0(   yy on a finite interval ]1,0[I . Here 2   is 

the spectral parameter. We assume that the weight function 2  is real with a finite number 

of zeros and/or singularities of first order in the open interval )1,0( , these zeros and 

singular points are the so–called turning points of (1). Moreover, these turning points are 
admitted to be singularities of first order of the potential function )(tq . The Sturm–Liouville 
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problem is said to be non-definite if the quadratic form dttty )()( 2
21

0
 associated with this 

equation is indefinite on the space of all differentiable functions y  in the interval I, having 

the special property (see [9] for more details). 
The representation of solutions of Sturm–Liouville equations by means of an 

infinite product is a direct consequence of the fact that any solution ),( ty  defined by a 

fixed set of initial conditions (as we have seen above) is necessarily an entire function of   
for each fixed It , whose order does not exceed 1/2 (see [3]). It follows from the classical 
Hadamard’s factorization theorem that such solutions are expressible as an infinite product, 
and so this gives an alternate description that has not been used as of yet for approximation 
purposes in the various applications. 

The importance of asymptotic analysis in obtaining information on the solution of 
Sturm-Liouville equation (1) with multiple singularities and turning points was realized by 
Freiling and Yurko [5] and Eberhard, Freiling and Stoeber in [4]. Also, inverse problem for 
equation (1) with singularities or turning points of even order were studied in [10]. 

 The subject Sturm-Liouville problem can also be seen inside the wider context of 
ordinary differential equations on multistructures, that have been a subject of increasing 
interest in the recent years, in relation with several problems arising in physics, 
engineering, chemistry, quantum chemistry and chemical engineering. Also, this 
autonomous equation arises in mechanics, combustion theory, and the theory of mass 
transfer with chemical reactions. For example, in (1), to a quantum physicist or chemist, 

)(tq  is a potential function describing a potential field, an eigenvalue   is an energy level 

and its eigenfunction is the corresponding wave function of a particle, the two together 
describing a bound state (for details see [11]). Also, equation (1) in the singularity case, 
appears in some chemical models ([13]), and in the chemical photodissociation of 
methyliodide (see [12] and [2]). 

The inverse problem of reconstructing the potential function )(tq  from the given 

spectral information and corresponding dual equation cannot be studied by using the 
asymptotic forms. In fact, in asymptotic methods one cannot generally express the exact 
solution in closed form. The closed form of the solution is needed in methods connected 
with dual equations. The representing solution of the infinite product form plays an 
important role in investigating the corresponding dual equations. In the previous article 
([10]), first an equation with one turning point of even order was considered, and derived a 
formula for the asymptotic distribution of the eigenvalues and the solutions. Then, by a 
replacement, the equation with turning point transformed to the differential equation with a 
singularity of the form (1) on the interval ],,0[ T where )(tq  is a real function having a 

singularity and its form is 
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product form 
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where ),,0( 10 tC  ),,( 11 TtC  ,1 Rr    1nn is the sequence of positive zeros of 2/1J   ( 2/1J is 

the Bessel function of order 1/2), and the sequence   1)( nn t  represents the sequence of 

positive eigenvalues of corresponding boundary value problem 
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In this paper, first, we define a fundamental system of solutions (FSS) of equation 

(1) for   (see section 2). Using these asymptotic solutions we derive a formula for 

the asymptotic distribution of the eigenvalues, further we obtain the infinite product 
representation of the solution, see Section 4.  

 

2 NOTATIONS AND PRELIMINARY RESULTS 

We consider the differential equation 
 

],1,0[,0))()(( 2  Itytqty                                         (2) 

 

where 2   is a real parameter, )(),( 2 ttq  are real functions, )(tq has two singular points 

21,tt  of first order in I, ( 10 21  tt ), that these points are turning points of 2 . 

 
Definition 1. (i) We define the following intervals for fixed 0  (  is sufficiently small): 
 

],0[ 2,1   tI ,              ].1,[ 1,2   tI  

       

(ii) We recall that there are four different types of zeros of order  . For 2,1 : 
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is called type of t . 

 
Assumption 1. (i) The functions  

,: ,0, RI       ),()(:)( 2
0, tttt  


      ,2,1  

are non–vanishing and real–analytic, where .121    

(ii) For 2,1,,,   ttIt , the function )(tq has the form 

,)()( 1  ttAtq  

with positive constants 
.A

 

 

So, according to Definition 1 and Assumption 1, 1t  is of type III  while 2t  is of type 

IV . According to the type of 1t , we know from [4] that in the sector 
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there is exists an FSS of (2)  ),(),,( 2,11,1  twtw  and such that 
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On the other hand, since 2t  is of type IV , we also have the following FSS  ),(),,( 2,21,2  twtw  
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That leads to the followings : 
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It follows that the wronskian of FSS satisfies 
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as   . 

 

Notation 1. For 12  k  and kSt  ]1,0[),(   we denote 
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and 112   , i 10  , 0)( tkn , also  

 

 )1(),1(max2)(...)()(0 21  RRttt knkk  , 

 

where the integer-valued functions   and knb  are constant in every interval ],0[ 1 t and 

],[ 21   tt  for   sufficiently small and 

 

   dxxtRdxxtR
tt

)(,0max)(,)(,0max)( 2

0

2

0
    . 

 
3 ASYMPTOTIC FORM OF THE SOLUTION  

We consider the differential equation (2) with the following conditions 

.0),0(,1),0(   CC                                                                             (12) 

Applying the FSS  ),(),,( 2,11,1  twtw  for ,1It  we have 
 

),(),(),( 2,121,11  twctwctC  , 
 

that using of Cramer's rule leads to the equation 
 

 ),(),0(),(),0(
)(

1
),( 2,11,11,12,1 


 twwtww

W
tC   

where  
   .12,)( 2,11,1  iwwWW   

Taking (3)-(6) in to account we derive 
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where 
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In addition, differentiating (13) we calculate 
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Hence we have estimated the solution of (2) defined by the initial conditions (12) in  ,1I . In 

order to find the solution in ,2I , we fix ),( 21 ttt  and use (7)-(10),  and Cramer's rule to 

determine the connection coefficients )(),( 21  AA  with 
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Substituting (15) and estimates of ),(1,2 tw and ),(2,2 tw  from (7) and (8) in the case  

12  tt  we derive the continuation of the solution to the interval ]1,( 2t  in the form : 
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      Thus, we deduce the following theorem. 
 
Theorem 1. Let ),( tC  be the solution of (2) under the initial conditions 1),0( C ,

0),0(  C ,  then the following estimates hold : 

 

 

 
4 EIGENVALUES AND INFINITE PRODUCT REPRESENTATION OF THE 
            SOLUTION 

We consider the boundary value problem )),(),(( 2
11 stqtLL   for equation (2) with 

boundary conditions  
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The boundary value problem 1L  for ),0( 1ts  has a countable set of positive 
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The spectrum  n  of boundary value problem 1L  for 21 tst  , consist of two 

sequences of negative and positive eigenvalues:      )()()( sss nnn
   , n , such 

that 
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Similarly for 12  st ,  from the estimates of  ),( tC  we see that :  
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Since the solution ),( sC  of Sturm-Liouville equation defined by a fixed set of 

initial conditions is an entire function of   for each fixed ]1,0[s ,  thus it follows from 

the classical Hadamard's factorization theorem (see [8, p. 24]) that such solution is 

expressible as an infinite product. For fixed ),0( 1ts  by Halvorsen's result [6], ),( sC  is 

an entire function of order 
2

1
. Therefore we can use Hadamard's theorem to represent the 

solution in the form 
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where )(sh  is a function independent of   but may depend on s  and the infinite number 

of negative eigenvalues,  1)( nn s  form the zero set of ),( sC  for each s .  

 

Since 0))(,( ssC n , these )(sn  correspond to eigenvalues of the boundary value 

problem 1L  on the closed interval ],0[ s , 10 ts  . We rewrite the infinite product as 
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Theorem 2. Let ),( tC  be the solution of (2) satisfying the initial conditions 1),0( C , 

0),0(  C . Then for 10 tt  , 
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dxxtR t   1, nn , is the sequence of positive zeros of 
1J , 

derivative of the Bessel function of order one, the sequence 1),( ntn , represents the 

sequence of positive eigenvalues of the boundary value problem 1L  on ],0[ t . 

 
Proof. According to [6] the infinite product  
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is an entire function of  , whose roots are precisely )(tn , 1n . From [1, p. 370] we have 
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Similarly, for 21, tttts  , the boundary value problem 1L  on ],0[ t  has a 

infinite number of negative and positive eigenvalues with are denoted (17). By Hadamard's 

theorem, the solution on ],0[ t , 21 ttt  , has the form 
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Consequently, the infinite products 




)()(

~

2

2

ttR

j

n

n


,  

 )()(

~

2

2

ttR

j

n

n


 are absolutely convergent 

for each ),( 21 ttt . Therefore we may write  

 

       








 


1

2
1

2

1
2

2

1 ~
)())((

~
)())((

)(),(
n n

n

n n

n

j

tRt

j

tRt
tgtC


 ,                                           (21) 

 
with   

 








)()(

~

)()(

~

)()(
2

2

2

2

1
ttR

j

ttR

j
tgtg

n

n

n

n


. 

 

Theorem 3. For 21 ttt  , 
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Proof. According From Lemmas 2 and 3 of [7] the infinite products 
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      We can proceed similarly, for 1, 2  ttts , to obtain 
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      Thus, we have the following theorem. 
 

 

Theorem 4. For 12  tt , 

 

  












 


1
2

2

1
2

2
2

2

1

2

1

2

1

~
)())((

~
)())((

)()()()0(
8

),(
n n

n

n n

n

j

tRt

j

tRt
tRtRttC


 . 

 

REFERENCES 

1. M. Abramowitz, J. A. Stegun, Handbook of mathematical functions with formalas, 
graphs, and mathematical tables, National Bureau of Standards Applied 
Mathematics Series, 55, United States Department of Commerce, Washington, DC, 
1964. 

2. W. O. Amrein, A. M. Hinz, D. B. Pearson, SturmLiouville theory: Past and 
Present, Birkhäuser Verlag, Basel, 2005. 

3. F. V. Atkinson, A. B. Mingarelli, Asymptotics of the number of zeros and of the 
eigenvalues of general weighted Sturm–Liouville problems, J. Reine Angew. Math. 
375, 380–393 (1987). 

4. W. Eberhard, G. Freiling, K. WilckenStoeber, Indefinite eigenvalue problems with 
several singular points and turning points, Math. Nachr. 229,  5171 (2001). 

5. G. Freiling, V. Yurko, On the determination of differential equations with 
singularities and turning points, Results Math. 41, 275290 (2002).  

6. S. G. Halvorsen, A function theoretic property of solutions of the equation     
0)(  xqwx  , Quart. J. Math. Oxford Ser. 38, 73–76 (1987). 

7. A. Jodayree Akbarfam, A. B. Mingarelli, The canonical product of the solution of 

the SturmLiouville equation in one turning point case, Canad. Appl. Math. Quart. 
8, 305320 (2000). 

8. B. Ja. Levin, Distribution of Zeros of Entire Functions, American Mathematical 
Society, Providence, RI, 1964. 

9. A. B. Mingarelli, A survey of the regular weighted Sturm–Liouville problem, The 

nondefinite case,  Proceeding of the Workshop on Differential Equations, 



40                                                                                                                                      S. MOSAZADEH 

 

Tsinghua University, Beijing, The People’s Republic of China, 3–7 June, 1985, 
World Scientific, Singapore, 1986. 

10. A. Neamaty, S. Mosazadeh, On the canonical solution of the Sturm–Liouville 
problem with singularity and turning point of even order, Canad. Math. Bull. 54, 
506–518 (2011). 

11. E. Schrodinger, An undulatory theory of the mechanics of atoms and molecules,  
Phys. Rev. 28, 1049–1070 (1926). 

12. J. K. Shaw, A. P. Baronavski, H. D. Ladouceur,W. O. Amrein, Applications of the 

Walker method in Spectral Theory and Computational Methods of SturmLiouville 
problems, Lecture Notes in Pure. Appl. Math. 191, 377–395 (1997). 

13. G. Vanden Berghe, V. Fack, H. De Meyer, Numerical methods for solving radial 
Schrodinger equations, J. Comp. Appl. Math. 28, 391–401 (1989). 


