A Note on atom bond connectivity index

SOMAIEH HEIDARI RAD[•] AND ALI KHAKI

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

(Received April 12, 2011)

ABSTRACT

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as $ABC(G) = \sum_{uv \in E} \sqrt{(d_G(u) + d_G(v) - 2)/d_G(u)d_G(v)}$, where $d_G(u)$ denotes degree of vertex *u*. In this paper we present some bounds of this new topological index.

Keywords: Topological index, ABC Index, nanotube, nanotori.

1. INTRODUCTION

A graph is a collection of points and lines connecting a subset of them. The points and lines of a graph also called vertices and edges of the graph, respectively. If e is an edge of G, connecting the vertices u and v, then we write e = uv and say "u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices. A simple graph is an unweighted, undirected graph without loops or multiple edges. A molecular graph is a simple graph such that its vertices correspond to the atoms and the edges to the bonds. Note that hydrogen atoms are often omitted.

Molecular descriptors play a significant role in chemistry, pharmacology, etc. Among them, topological indices have a prominent place [1]. One of the best known and widely used is the connectivity index, χ , introduced in 1975 by Milan Randić [2], who has

[•]Corresponding author.

shown this index to reflect molecular branching. Recently Estrada et al. [3, 4, 5] introduced atom-bond connectivity (*ABC*) index, which it has been applied up until now to study the stability of alkanes and the strain energy of cyclo - alkanes. This index is defined as follows:

$$ABC(G) = \sum_{e=uv \in E(G)} \sqrt{\frac{d_{G}(u) + d_{G}(v) - 2}{d_{G}(u)d_{G}(v)}},$$

where $d_G(u)$ stands for the degree of vertex u.

Recently, Graovac and Ghorbani defined a new version of the atom-bond connectivity index namely the second atom-bond connectivity index:

$$ABC_2(G) = \sum_{uv \in E(G)} \sqrt{\frac{n_u + n_v - 2}{n_u n_v}},$$

Some upper and lower bounds for the ABC_2 index of general graphs have been given in [6]. The goal of this paper is to study the properties of ABC and ABC_2 indices. Our notation is standard and mainly taken from standard books of chemical graph theory [7]. All graphs considered in this paper are finite, undirected, simple and connected. One can see the references [8 – 17], for more details about topological indices.

2. MAIN RESULTS AND DISCUSSION

In this section, we present some properties of atom bond connectivity indices. We refer the readers to references [18, 19].

The first Zagreb index is defined as $M_1(G) = \sum_{uv \in E} d_G(u) + d_G(v)$, where $d_G(u)$ denotes the degree of vertex u. The modified second Zagreb index $M_2^*(G)$ is equal to the sum of the products of the reciprocal of the degrees of pairs of adjacent vertices of the underlying molecular graph G, that is,

$$M_{2}^{*}(G) = \sum_{uv \in E} \frac{1}{d_{G}(u)d_{G}(v)}.$$

Theorem 1 ([18]). Let *G* be a connected graph with *n* vertices, *p* pendent vertices, *m* edges, maximal degree Δ , and minimal non-pendent vertex degree δ_1 . Let M_1 and M_2^* be the first and modified second Zagreb indices of *G*. Then

$$ABC(G) \le p\sqrt{1-\frac{1}{\Delta}} + \sqrt{[M_1 - 2m - p(\delta 1 - 1)](M_2^* - \frac{p}{\Delta})}.$$

Corollary 1 ([18]). With the same notation as in Theorem 1, $ABC(G) \le \sqrt{(M_1 - 2m)M_2^*}$, with equality if and only if G is regular or bipartite semi-regular.

Theorem 2 ([19, Nordhaus–Gaddum–Type]). Let G be a simple connected graph of order n with connected complement \overline{G} . Then

$$ABC(G) + ABC(\bar{G}) \ge \frac{2^{3/4}n(n-1)\sqrt{k-1}}{k^{3/4}(\sqrt{k}+\sqrt{2})}$$
(1)

where $k = \max{\{\Delta, n - \delta - 1\}}$, and where Δ and δ are the maximal and minimal vertex degrees of *G*. Moreover, equality in (1) holds if and only if $G \approx P_4$.

Theorem 3 ([17]). Let G be a simple connected graph of order n with connected complement \overline{G} . Then

$$ABC(G) + ABC(\bar{G}) \le (p + \bar{p})\sqrt{\frac{n-3}{n-2}} \left(1 - \sqrt{\frac{2}{n-2}}\right) + \binom{n}{2}\sqrt{\frac{2}{k} - \frac{2}{k^2}}$$
(2)

where p, \overline{p} and δ_1 , $\overline{\delta_1}$ are the number of pendent vertices and minimal non-pendent vertex degrees in *G* and \overline{G} , respectively, and $k = \min\{\delta_1, \overline{\delta_1}\}$. Equality holds in (2) if and only if $G \approx P_4$ or *G* is an *r*-regular graph of order 2r + 1.

Theorem 4. Let G be a connected graph of order n with m edges and p pendent vertices, then

$$ABC_2(G) < p\sqrt{\frac{n-2}{n-1}} + (m-p).$$

Proof. Clearly, we can assume that $n \ge 3$. For each pendent edge uv of graph G we have $n_u = 1$ and $n_v = n - 1$. For each non-pendent edge uv of graph G we have $(n_u + n_v - 2)/n_u n_v < 1$. So

$$ABC_{2}(G) = \sum_{uv \in E} \sqrt{\frac{n_{u} + n_{v} - 2}{n_{u}n_{v}}} = \sum_{uv \in E, d_{u} = 1} \sqrt{\frac{n_{u} + n_{v} - 2}{n_{u}n_{v}}} + \sum_{uv \in E, d_{u}, d_{v} \neq 1} \sqrt{\frac{n_{u} + n_{v} - 2}{n_{u}n_{v}}} \\ < p\sqrt{\frac{n - 2}{n - 1}} + m - p.$$

A simple calculation shows that the Diophantine equation x + y - 2 = xy does not have any integer solution. Then the upper bound does not happen.

Theorem 5. Let *T* a tree of order n > 2 with *p* pendent vertices. Then

$$ABC_2(T) \le p\sqrt{\frac{n-2}{n-1}} + \frac{\sqrt{2}}{2}(n-p-1)$$
 (2)

with equality if and only if $T \cong K_{1,n-1}$ or $T \cong S(2r,s)$ where n = 2r + s + 1.

Proof. For any edge *uv* of trees we have $n_u + n_v = n$. If *T* be an arbitrary tree with $n \ge 3$ vertex, then ABC_2 is simplified as

$$ABC_2(T) = \sqrt{n-2} \sum_{uv \in E(T)} \frac{1}{\sqrt{n_u n_v}}.$$

Now we assume, the tree *T* have *p* pendent vertex, then there are exist *p* edge that $n_u = 1$ and $n_v = n-1$. For each non-pendent edge *uv* of tree *T*, $2 \le n_u, n_v \le n-2$ and then $n_u n_v \ge 2(n-2)$. This implies that $\sqrt{n_u n_v} \ge \sqrt{2(n-2)}$ and so $\frac{1}{\sqrt{n_u n_v}} \le \frac{1}{\sqrt{2(n-2)}}$.

Hence,

$$ABC_{2}(T) = \sqrt{n-2} \left(\sum_{\substack{uv \in E(T), \\ d_{u}=1}} \frac{1}{\sqrt{n_{u}n_{v}}} + \sum_{\substack{uv \in E(T), \\ d_{u}, d_{v} \neq 1}} \frac{1}{\sqrt{n_{u}n_{v}}} \right)$$
$$\leq \sqrt{n-2} \left(\frac{p}{\sqrt{n-1}} + \frac{n-p-1}{\sqrt{2(n-2)}} \right) = p\sqrt{\frac{n-2}{n-1}} + \frac{\sqrt{2}}{2}(n-p-1).$$
(7)

Suppose now that equality holds in (6), we can consider the following cases:

Case (a): p = n - 1. From equality in (7), we must have $n_u = n - 1$ and $n_v = 1$ for each edge $uv \in E(T)$ and $n_u \ge n_v$, that is, each edge uv must be pendent. Since T is a tree, $T \cong K_{1,n-1}$.

Case (*b*): p < n - 1. In this case the diameter of *T* is strictly greater than 2. So there is a neighbor of a pendent vertex, say *u*, adjacent to some non-pendent vertex *k*. Since $n_u = n - 2$ and $n_v = 2$ for each non-pendent edge $uv \in E(T)$, $n_u \ge n_v$ we conclude that the degree of each neighbor of a pendent vertex is two and each such vertex is adjacent to vertex *k*. In addition, also the remaining pendent vertices are adjacent to vertex *k*. Hence *T* is isomorphic to $T \cong S(2r, s)$ where n=2r+s+1. Conversely, one can see easily that the equality in (1) holds for star $K_{1,n-1}$ or S(2r,s) where n=2r+s+1.

3. ATOM BOND CONNECTIVITY INDEX OF NANOSTRUCTURES

The goal of this section is computing the *ABC* index of a lattice of $TUC_4C_8[p, q]$, with q rows and p columns. Then we compute this topological index for its nanotubes. Finally, we calculate *ABC* index of $TUC_4C_8[p, q]$, see Figure 1.

Figure 1. 2 - D graph of Lattice $C_4C_8[4, 4]$.

Example 1. Let P_n be a path with *n* vertices. It is easy to see that P_n has exactly 2 edges with endpoints degrees 1 and 2. Other edges endpoints are of degree 2.

$$ABC(P_n) = (n-1)\frac{\sqrt{2}}{2}.$$

Example 2. Consider the graph C_n of a cycle with *n* vertices. Every vertex of a cycle is of degree 2. In other words,

$$ABC(C_n) = n \frac{\sqrt{2}}{2}.$$

Example 3. A star graph with n + 1 vertices is denoted by S_n . This graph has a central vertex of degree n and the others are of degree 1. Hence the *ABC* index is as follows:

$$ABC(C_n) = \sqrt{n(n-1)}$$
.

Consider now 2 dimensional graph of lattice $G = TUC_4C_8[p, q]$ depicted in Figure 1. Degrees of edge endpoints of this graph are as follows:

Edge Endpoints	[2, 2]	[2, 3]	[3, 3]
Number of Edges of This Type	2p + 2q + 4	4p + 4q - 8	12pq-8(p+q)+4

On the other hand by summation these values one can see that:

$$ABC(G) = (12pq - 8p - 8q + 4)\frac{2}{3} + (2p + 2q + 4)\frac{\sqrt{2}}{2} + (4p + 4q - 8)\frac{\sqrt{2}}{2}$$
$$= 8pq + \frac{2}{3}(4 - 8p - 8q) + (3p + 3q - 2)\sqrt{2}.$$

Hence, we proved the following theorem:

Theorem 6. Consider 2 - D graph of lattice $G = C_4 C_8[p, q]$. Then

$$ABC(G) = 8pq + \frac{2}{3}(4 - 8p - 8q) + (3p + 3q - 2)\sqrt{2}.$$

In continuing consider the graph of nanotube $H = C_4 C_8[p, q]$, shown in Figure 2. Similar to Theorem 6, we have the following values for endpoint degrees of vertices of *H*.

Figure 2. 2 - D Graph of $C_4C_8[4,4]$ Nanotube.

Edge Endpoints	[2, 2]	[2, 3]	[3, 3]
Number of Edges of This Type	2 <i>p</i>	4 <i>p</i>	12pq-8p

Thus, we can deduce the following formula for *ABC* index:

$$ABC(H) = \frac{2}{3}(12pq - 8p) + 2p\frac{\sqrt{2}}{2} + 4p\frac{\sqrt{2}}{2} = 8pq - \frac{16}{3}p + 3p\sqrt{2}.$$

So, the proof of the following theorem is clear.

Theorem 8. Consider 2 - D graph of nanotube $H = TUC_4C_8[p, q]$. Then

$$ABC(H) = 8pq - \frac{16}{3}p + 3p\sqrt{2}.$$

Theorem 9. Consider the graph of nanotori $K = C_4 C_8[p, q]$ in Figure 3. The *ABC* index of *K* is *ABC*(*K*)=8*pq*.

Proof. It is easy to see that this graph has 12pq edges. On the other hand, *K* is 3 regular graph and this complete the proof.

Figure 3. 2 - D graph of $K = C_4 C_8[4,4]$ Nanotorus.

REFERENCES

- 1. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley–VCH, Weinheim, 2000.
- 2. M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- 3. E. Estrada, Atom–bond connectivity and the energetic of branched alkanes, *Chem. Phys. Lett.* **463** (2008) 422 425.
- E. Estrada, L. Torres, L. Rodríguez and I. Gutman, An atom–bond connectivity index: Modelling the enthalpy of formation of alkanes, *Indian J. Chem.* **37A** (1998) 849 – 855.
- 5. B. Furtula, A. Graovac and D. Vukičević, Atom–bond connectivity index of trees, *Disc. Appl. Math.* **157** (2009) 2828 2835.
- 6. A. Graovac and M. Ghorbani, A New version of atom-bond connectivity index, *Acta Chim. Slov.*, **57** (2010) 609 612.
- 7. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
- 8. I. Gutman, M. Ghorbani and M. A. Hosseinzadeh, The truncated Randić-type indices, *Kragujevac J. Sci.* **32** (2010) 47 56.

- 9. M. A. Hosseinzadeh and M. Ghorbani, On the Zagreb indices of nanostar dendrimers, *Optoelectron. Adv. Mater.- Rapid Comm.* **4** (3) (2010) 378 380.
- 10. A. R. Ashrafi, M. Ghorbani and M. Jalali, Computing sadhana polynomial of Vphenylenic nanotubes and nanotori, *Indian J. Chem.* **47A** (2008) 535 537.
- A. R. Ashrafi, M. Jalali, M. Ghorbani and M. V. Diudea, Computing PI and Omega Polynomials of an Infinite Family of Fullerenes, *MATCH Commun. Math. Comput. Chem.* 60 (3) (2008) 905 – 916.
- A. R. Ashrafi and M. Ghorbani, The PI and Edge Szeged polynomials of an infinite family of fullerenes, *Fullerenes*, *Nanotubes and Carbon Nanostructure*, **18** (2010) 37 – 41.
- 13. M. Faghani, M. Ghorbani, The number of permutational isomers of CL20 molecules, *MATCH Commun. Math. Comput. Chem.* **65** (2011) 21 26.
- 14. M. Ghorbani and M. Jalali, On Omega polynomials of C_{40n+6} fullerenes, *Studia* Universititatis Babes-Bolyai, Chemia **57** (4) (2009) 25 32.
- 15. M. Ghorbani, Computing the vertex PI and Szeged polynomials of fullerene graphs C_{12n+4} , *MATCH Commun. Math. Comput. Chem.* **65** (2011) 183 192.
- M. Ghorbani and M. Jalali, The vertex PI, Szeged and Omega polynomials of carbon nanocones CNC₄[n], MATCH Commun. Math. Comput. Chem. 62 (2009) 353 362.
- 17. A. R. Ashrafi and M. Ghorbani, Enumeration of a class of IPR hetero-fullerenes, *J. Serb. Chem. Soc.* **75** (3) (2010) 361 368.
- 18. K. C. Das, I. Gutman and B. Furtula, On atom–bond connectivity index, *Filomat* 26 (4) (2012), 733 738
- 19. K. C. Das, Atom-bond connectivity index of graphs, *Discrete Appl. Math.* **158** (2010) 1181 1188.