On Counting Polynomials of Some Nanostructures

Modjtaba Ghorbani and Mahin Songhori
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

(Received May 29, 2011)

Abstract

The Omega polynomial $\Omega(x)$ was recently proposed by Diudea, based on the length of strips in given graph G. The Sadhana polynomial has been defined to evaluate the Sadhana index of a molecular graph. The PI polynomial is another molecular descriptor. In this paper we compute these three polynomials for some infinite classes of nanostructures.

Keywords: Omega polynomial, PI polynomial, nanostar dendrimers.

1. Introduction

We now recall some algebraic definitions that will be used in the paper. Let G be a simple molecular graph without directed and multiple edges and without loops, the vertex and edge-sets of which are represented by $V(G)$ and $E(G)$, respectively. Suppose G is a connected molecular graph and $x, y \in V(G)$. The distance $d(x, y)$ between x and y is defined as the length of a minimum path between x and y . Two edges $e=a b$ and $f=x y$ of G are called codistant, " e co f ", if and only if $d(a, x)=d(b, y)=k$ and $d(a, y)=d(b, x)=k+1$ or vice versa, for a non-negative integer k. For some edges of a connected graph G there are the following relations satisfied [1-4]:

$$
\begin{align*}
& e \cos e \tag{1}\\
& e \cos f \Leftrightarrow f \cos e \tag{2}\\
& e \operatorname{co} f, f \operatorname{coh} \Rightarrow e \operatorname{coh} \tag{3}
\end{align*}
$$

though the relation (3) is not always valid.
Let $C(e):=\{f \in E(G) ; f$ co $e\}$ denote the set of edges in G, codistant to the edge $e \in E(G)$. If relation $c o$ is an equivalence relation (i.e., all the elements of $C(e)$ satisfy the relations (1) to (3)), then G is called a co-graph. Consequently, $C(e)$ is called an orthogonal

[^0]cut "oc" of G and $E(G)$ is the union of disjoint orthogonal cuts: $E(G)=C_{1} \cup C_{2} \cup \ldots \cup C_{k}$ and $C i \cap C j=\emptyset$ for $i \neq j, i, j=1,2, . ., k$.

The Omega polynomial $\Omega(x)$ for counting qoc strips in G was defined by Diudea as $\Omega(x)=\sum_{c} m(G, c) \times x^{c}$ with $m(G, c)$ being the number of strips of length c. The summation runs up to the maximum length of qoc strips in G. If G is bipartite then a qoc starts and ends out of G and so $\Omega(G, 1)=r / 2$, in which r is the number of edges in out of G.

The Sadhana index $\operatorname{Sd}(G)$ for counting qoc strips in G was defined by Khadikar et al. [5, 6] as $\operatorname{Sd}(G)=\Sigma_{c} m(G, c)(|E(G)|-c)$, where $m(G, c)$ is the number of strips of length c. The Sadhana polynomial $S d(x)$ was defined by Ashrafi and his co-authors [7] as $S d(x)=$ $\Sigma_{c} m(G, c) x^{|E|}-c$. By definition of omega polynomial, one can obtain the Sadhana polynomial by replacing x^{c} with $x^{|E|-c}$ in omega polynomial. Then the Sadhana index will be the first derivative of $\operatorname{Sd}(x)$ evaluated at $x=1$.

If e is an edge of G, connecting the vertices u and v then we write $e=u v$. The number of vertices of G is denoted by $|G|$. Let U be the subset of vertices of $V(G)$ which are closer to u than v and V be the subset of vertices of $V(G)$ which are closer to v than u :

$$
\begin{aligned}
& U=\left\{u_{i} \mid u_{i} \in V(G), d\left(u, u_{i}\right)<d\left(u_{i}, v\right)\right\}, \\
& V=\left\{v_{i} \mid v_{i} \in V(G), d\left(v, v_{i}\right)<d\left(v_{i}, v\right)\right\} .
\end{aligned}
$$

Let now $U=\prec U, E_{1} \succ, V=\prec V, E_{2} \succ$, then $n_{1}(e)=\left|E_{1}\right|$ are the number of edges nearer to u than v and $n_{2}(e)=\left|E_{2}\right|$ are the number of edges nearer to v than u. In all case of cyclic graphs there are edges equidistant to the both ends of the edges. Such edges are not taken into account. Then, the PI index $[8,9]$ is defined as:

$$
\begin{equation*}
P I(G)=\sum_{e \in E}\left[n_{1}(e)+n_{2}(e)\right] \tag{4}
\end{equation*}
$$

Similar to the case of Sadhaa index, the PI polynomial was defined as:

$$
\begin{equation*}
P I(x)=\sum_{e \in E} x^{\left[n_{1}(e)+n_{2}(e)\right]} . \tag{5}
\end{equation*}
$$

So, the PI index is the first derivative of $P I(x)$ at $x=1$. Given an edge $e=u v \in \mathrm{E}(G)$ of G, we define the distance of e to a vertex $w \in V(G)$ as the minimum of the distances of its edges to w, i.e.,

$$
d(w, e):=\min \{d(w, u), d(w, v)\} .
$$

Note that in this definitions the edges equidistant from the two ends of the edge $e=u v$ i.e., edges f with $d(u, f)=d(v, f)$ are not counted. We call such edges parallel to e. This implies that we can write $P I(x)=\sum_{e \in E(G)} x^{|E|-|N(e)|}$, where $N(e)$ is set of all parallel edges with e.

Here our notations are standard and mainly taken from standard book of graph theory such as [10]. We encourage reader to consult the work of Khadikar for discussion and background material about the PI index [11-15].

2. NANOSTAR DENDRIMERS

The goal of this section is computation of PI, Omega and Sadhana polynomials of nanostar dendrimer G_{n}, depicted in Figure 1. To do this, consider the following fundamental proposition:

Proposition 1. Let G be a bipartite graph and $e \in E(G)$. Then $C(e)=N(e)$.

By using Proposition 1 we can reformulate three mentioned counting polynomials as follows:

$$
\begin{aligned}
& \Omega(x)=\sum_{c} m(G, c) \times x^{c}, \\
& S d(x)=\sum_{c} m(G, c) \times x^{|E|-c}, \\
& P I(x)=\sum_{c} c . m(G, c) \times x^{|E|-c},
\end{aligned}
$$

where $m(G, c)$ is the number of strips of length c.
Now we are ready to compute three counting polynomials of nanostar dendrimer G_{n}. At first consider G_{1}, in Figure 2. Obviously, there are two different strips, e. g. F_{1} and F_{2}. On the other hand there are 36 strips of type F_{1} and 9 strips of type F_{2}. Further, $\left|F_{1}\right|=2$ and $\left|F_{2}\right|=1$. Hence by using Theorem 1, we have

$$
\Omega(x)=9 x^{2}+3 x, S d(x)=9 x^{19}+3 x^{20}, P I(x)=18 x^{19}+3 x^{20} .
$$

Let us consider the graph of G_{2} depicted in Figure 1. Similar to the last case, there are two different strips, namely F_{1} and F_{2}, in which $\left|F_{1}\right|=2$ and $\left|F_{2}\right|=1$. On the other hand there are 36 strips of type F_{1} and 9 strips of type F_{2}. Further, $\left|F_{1}\right|=2$ and $\left|F_{2}\right|=1$. This implies

$$
\Omega(x)=36 x^{2}+9 x, S d(x)=9 x^{85}+3 x^{86}, P I(x)=72 x^{85}+9 x^{86} .
$$

In generally, in G_{n} there are two strips F_{1} and F_{2}, with $\left|F_{1}\right|=2$ and $\left|F_{2}\right|=1$. By counting strips equivalent with F_{1} and F_{2} respectively, it is easy to see that there are $9+$ $27 \times 2^{\mathrm{n}-2}$ strips of type F_{1} and $3+12 \times 2^{\mathrm{n}-2}$ cut edges. Thus we proved the following Theorem:

Figure 1. $2 D$ Graph of Nanostar Dendrimer G_{n} for $n=2$.

Figure 2. $2 D$ Graph of Nanostar Dendrimer G_{n} for $n=1$.

Theorem 2. Consider the nanostar dendrimer G_{n}, for $n \geq 2$. Then

$$
\begin{aligned}
& \Omega(x)=\left(9+27 \times 2^{n-2}\right) x^{2}+\left(3+12 \times 2^{n-2}\right) x \\
& S d(x)=\left(9+27 \times 2^{n-2}\right) x^{|E|-2}+\left(3+12 \times 2^{n-2}\right) x^{|E|-1} \\
& P I(x)=2\left(9+27 \times 2^{n-2}\right) x^{|E|-2}+\left(3+12 \times 2^{n-2}\right) x^{|E|-1}
\end{aligned}
$$

where $|E|=\left|E\left(G_{n}\right)\right|=33 \times 2^{n}-45$.

3. Fullerene Graphs

Carbon exists in several allotropic forms in nature. Fullerenes are zero-dimensional
nanostructures, discovered experimentally in 1985 [16]. Fullerenes are carbon-cage molecules in which a number of carbon atoms are bonded in a nearly spherical configuration. The most famous fullerenes are [5, 6] fullerenes, e. g fullerenes with pentagonal and hexagonal faces. In this section we study [3, 6] fullerenes. Let t, h, n and m be the number of triangles, hexagons, carbon atoms and bonds between them, in a given fullerene C. Since each atom lies in exactly 3 faces and each edge lies in 2 faces, the number of atoms is $n=(3 p+6 h) / 3$, the number of edges is $m=(3 t+6 h) / 2=(3 / 2) n$ and the number of faces is $f=t+h$. By the Euler's formula $n-m+f=2$, one can deduce that ($3 t+$ $6 h) / 3-(3 t+6 h) / 2+t+h=2$, and therefore $t=4$. This implies that such molecules, made entirely of n carbon atoms, have 4 triangles and ($n / 2$) - 2 hexagonal faces.

In this section we compute Omega polynomial and Sadhana polynomial of an infinite class of fullerene graphs, namely $C_{8 n}$ fullerenes, see Figures 3, 4. In other words, this family of fullerenes has exactly $8 n$ vertices and $12 n$ edges.

Figure 3. $2 D$ Graph of Fullerene $C_{8 n}$ for $n=2$.

Figure 4. $2 D$ Graph of Fullerene $C_{8 n}$ for $n=3$.
At first suppose $n=2$, Figure 3. By computing number of strips and their sizes Omega and Sadhana polynomials are as follows:

$$
\Omega(G, x)=2 x^{2}+4 x^{6}+2 x^{4} \text { and } S d(G, x)=2 x^{34}+4 x^{30}+2 x^{32} .
$$

When $n=3$, Figure 4 , one can see that $\Omega(G, x)=2 x^{2}+4 x^{6}+2 x^{4}$ and
$S d(G, x)=2 x^{34}+4 x^{30}+2 x^{32}$. By computing this method we have the following Theorem for Omega and Sadhana polynomials of [3, 6] fullerene graphs:

Theorem 3. Consider the fullerene graph $C_{8 n}$ (Figure 5). Then:

$$
\begin{aligned}
& \Omega\left(F_{8 n}, x\right)=\left\{\begin{array}{ll}
2 x^{2}+(n-1) x^{4}+4 x^{2 n} & 2 \mid n \\
2 x^{2}+(n-1) x^{4}+2 x^{n}+3 x^{2 n} & 2 \mid n
\end{array},\right. \\
& S d\left(F_{8 n}, x\right)= \begin{cases}2 x^{12 n-2}+(n-1) x^{12 n-4}+4 x^{10 n} & 2 \mid n \\
2 x^{12 n-2}+(n-1) x^{12 n-4}+2 x^{11 n}+3 x^{10 n} 2 \mid n\end{cases}
\end{aligned}
$$

Proof. To compute qoc strips we should to consider two cases:
Case 1: n is even. According to Figure 5(a), there are 3 strips such as $C\left(e_{1}\right), C\left(e_{2}\right)$ and $C\left(e_{3}\right)$ with $\left|\mathrm{C}\left(\mathrm{e}_{1}\right)\right|=2 \quad\left|\mathrm{C}\left(\mathrm{e}_{2}\right)\right|=4$ and $\left|C\left(e_{3}\right)\right|=2 n$. On the other hand, there are 2, $n-1,4$ stripes of types $C\left(e_{1}\right), C\left(e_{2}\right)$ and $C\left(e_{3}\right)$, respectively. This completes the first claim.

Case 2: n is odd. n is even. According to Figure 5(b), there are 4 strips such as $C\left(e_{1}\right), C\left(e_{2}\right), C\left(e_{3}\right)$ and $C\left(e_{4}\right)$ with $\left|C\left(e_{1}\right)\right|=2 ،\left|C\left(e_{2}\right)\right|=4,\left|C\left(e_{3}\right)\right|=n$ and $\left|C\left(e_{4}\right)\right|=2 n$. On the other hand, there are $2, n-1,2,3$ stripes of types $C\left(e_{1}\right), C\left(e_{2}\right), C\left(e_{3}\right)$ and $C\left(e_{4}\right)$, respectively. This completes the proof.

Figure 5 (a). $2 D$ Graph of Fullerene $C_{8 n}, n$ is Even.

Figure 5(b). $2 D$ Graph of Fullerene $C_{8 n}, n$ is Odd.

REFERENCES

1. M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu and P. E. John, Omega polynomial in tubular nanostructures, Croat. Chem. Acta. 79 (2006) 445-448.
2. A. E. Vizitiu, S. Cigher, M. V. Diudea and M. S. Florescu, Omega polynomial in $((4,8) 3)$ tubular nanostructures, MATCH Commun. Math. Comput. Chem. 57 (2007) $457-462$.
3. M. V. Diudea, Note on omega polynomial, Carpath. J. Math. 22 (2006) $43-47$.
4. M. V. Diudea, Phenylenic and naphthylenic tori, Fullerenes, Nanotubes and Carbon Nanostructures 10 (2002) 273-292.
5. P. V. Khadikar, S. Joshi, A .V. Bajaj and D. Mandloi, A method of computing the PI index of benzenoid hydrocarbons using orthogonal cuts, Bioorg. Med. Chem. Lett. 14 (2004) 1187 - 1191.
6. P. V. Khadikar, V. K. Agrawal and S. Karmarkar, Prediction of lipophilicity of polyacenes using quantitative structure - activity relationships, Bioorg. Med. Chem. 10 (2002) 3499 - 3507.
7. A. R. Ashrafi, M. Ghorbani and M. Jalali, Computing Sadhana polynomial of V phenylenic nanotubes and nanotori, Ind. J. Chem. 47A (2008) 535 - 537.
8. P. V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113-118.
9. P. V. Khadikar, S. Karmarkar, V. K. Agrawal, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934 - 949.
10. N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
11. P. V. Khadikar, S. Karmarkar, V. K. Agrawal PI index of polyacenes and its use in developing QSPR, Nat. Acad. Sci. Lett. 23 (2000) 124 - 128.
12. P. V. Khadikar, M. V. Diudea, J. Singh, P. E. John, A. Shrivastava, S. Singh, S. Karmarkar, M. Lakhwani, P. Thakur, Use of PI index in computer-aided designing of bioactive compounds, Curr. Bioact. Comp. 2 (2006) $19-56$.
13. P. E. John, P. V. Khadikar, J. A. Singh, Method for computing the PI index of benzenoid hydrocarbons using orthogonal cuts, J. Math. Chem. 42 (2007) $37-45$.
14. P. V. Khadikar, D. Mandloi, A. K. Bajaj, Novel applications of PI index: Prediction of the ultrasonic sound velocity in N-alkanes, Oxid. Commun. 27 (2004) 29 - 33.
15. A. R. Ashrafi, M. Jalali, M. Ghorbani and M. V. Diudea, Computing PI and omega polynomials of an infinite family of fullerenes, MATCH Commun. Math. Comput. Chem. 60 (3) (2008) 905-916.
16. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R.. Smalley, C 60 : buckminsterfullerene, Nature 318 (1985) 162-163.

[^0]: -Author to whom correspondence should be addressed.(e-mail:mghorbani@ srttu.edu)

