Applications of graph operations

M. TAVAKOLI* and F. Rahbarnia
Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran

(Received January 5, 2013; Accepted February 22, 2013)

Abstract

In this paper, some applications of our earlier results in working with chemical graphs are presented.

Keywords: Topological index, graph operation, hierarchical product, chemical graph.

1. Introduction

Throughout this paper all graphs considered are finite, simple and connected. The distance $d_{G}(u, v)$ between the vertices u and v of a graph G is equal to the length of a shortest path that connects u and v. Suppose G is a graph with vertex and edge sets $V=V(G)$ and $E=$ $E(G)$, respectively, and $e=a b \in E(G)$. The set of edges of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $M_{u}^{G}(e)$. Then the edge PI index of $G, P I_{e}(G)$, is defined as $P I_{e}(G)=\sum_{e=u v \in E(G)}\left(\left|M_{u}^{G}(e)\right|+\left|M_{v}^{G}(e)\right|\right)$ [1,2]. In a similar way, $N_{a}^{G}(e)$ is defined as the set of vertices closer to the vertex a than to the vertex b . In other words, $N_{a}^{G}(e)=\{u \in V(G) \mid d(u, a)<d(u, b)\}$. The vertex PI index of $G, P I_{v}(G)$, is defined as $\left[\left|N_{u}^{G}(e)\right|+\left|N_{v}^{G}(e)\right|\right]$ over all edges of $G[3,4]$. The edges $e=u v$ and $f=x y$ of G are said to be equidistant if $\min \left\{d_{G}(u, x), d_{G}(u, y)\right\}=\min \left\{d_{G}(v, x), d_{G}(v, y)\right\}$. For $e=u v \in G$, the set

[^0]of equidistant vertices of e is denoted by $N_{O}^{G}(e)$ and the set of equidistant edges of e is denoted by $M_{0}^{G}(e)$. Then the above definitions are equivalent to
\[

$$
\begin{aligned}
& P I_{v}(G)=|V(G)||E(G)|-\sum_{e \in E(G)}\left|N_{O}^{G}(e)\right|, \\
& P I_{e}(G)=|E(G)|^{2}-\sum_{e \in E(G)}\left|M_{O}^{G}(e)\right| .
\end{aligned}
$$
\]

A graph G with a specified vertex subset $U \subseteq V(G)$ is denoted by $G(U)$. Suppose G and H are graphs and $U \subseteq V(G)$. The generalized hierarchical product, denoted by $G(U) \Pi H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent if and only if $g=g^{\prime} \in U$ and $h h^{\prime} \in E(H)$ or, $g g^{\prime} \in E(G)$ and $h=h^{\prime}$. This graph operation has been introduced by Barriére et al. [5,6] and it has some applications in computer science. To generalize this graph operation to n graphs, assume that $G_{i}=\left(V_{i}, E_{i}\right)$ is a graph with vertex set $V_{i}, l \leq i \leq N$, having a distinguished or root vertex 0 . The hierarchical product $H=G_{N} \Pi \ldots \Pi G_{2} \Pi G_{I}$ is the graph with vertices the N-tuples $x_{N} \ldots$ $x_{3} x_{2} x_{1}, x_{i} \in V_{i}$, and edges defined by the following adjacencies:

$$
x_{N} \ldots x_{3} x_{2} x_{1} \sim\left\{\begin{array}{ccc}
x_{N} \ldots x_{3} x_{2} y_{1} & \text { if } & x_{1} y_{1} \in E\left(G_{1}\right), \\
x_{N} \ldots x_{3} y_{2} x_{1} & \text { if } & x_{2} y_{2} \in E\left(G_{2}\right) \text { and } x_{1}=0, \\
x_{N} \ldots y_{3} x_{2} x_{1} & \text { if } & x_{3} y_{3} \in E\left(G_{3}\right) \text { and } x_{1}=x_{2}=0, \\
: & : & : \\
y_{N} \ldots x_{3} x_{2} x_{1} & \text { if } & x_{N} y_{N} \in E\left(G_{N}\right) \text { and } x_{1}=x_{2}=\ldots=x_{N-1}=0 .
\end{array}\right.
$$

We encourage the reader to consult [7] for the mathematical properties of the hierarchical product of graphs.

2. Main Results

Let $G=(V, E)$ be a graph and $U \subseteq V$. Following Pattabiraman and Paulraja [8], an $u-v$ path through U in $G(U)$ is an $u-v$ path in G containing some vertex $w \in U$ (not necessarily distinct from the vertices u and v). Let $d_{G(U)}(u, v)$ denote the length of a shortest $u-v$ path through U in G. Notice that, if one of the vertices u and v belong to U, then $d_{G(U)}(u, v)=$ $d_{G}(u, v)$. A vertex $x \in V(G(U))$ is said to be equidistant from $e=u v \in E(G(U))$ through U in $G(U)$, if $d_{G(U)}(u, x)=d_{G(U)}(v, x)$. For an edge $e=a b$ in $G(U)$, let $N_{O}^{G(U)}(e)$ denote the set of equidistant vertices of e through U in $G(U)$ and $N_{a}^{G(U)}(e)$ denote the set of vertices closer to a than to b through U in G. Then $P I_{v}(G(U))$ and $P I_{e}(G(U))$ can be computed by the following formula:

$$
\begin{aligned}
P I_{v}(G(U)) & =\sum_{e=a b \in E(G(U))}\left(\left|N_{a}^{G(U)}(e)\right|+\left|N_{b}^{G(U)}(e)\right|\right) \\
& =|V(G(U))||E(G(U))|-\sum_{e \in E(G(U))}\left|N_{0}^{G(U)}(e)\right| .
\end{aligned}
$$

The edges $e=u v$ and $f=x y$ of $G(U)$ are said to be equidistant edges through U in $G(U)$ if

$$
\min \left\{d_{G(U)}(u, x), d_{G(U)}(u, y)\right\}=\min \left\{d_{G(U)}(v, x), d_{G(U)}(v, y)\right\}
$$

Let $M_{0}^{G(U)}(e)$ denote the set of equidistant edges of e through U in $G(U)$ and $M_{a}^{G(U)}(e)$ denote the set of edges closer to a than to b through U in G. Then $P I_{e}(G(U))$ is computed as follows:

$$
\begin{aligned}
P I_{v}(G(U)) & =\sum_{e=a b \in E(G(U))}\left(\left|M_{a}^{G(U)}(e)\right|+\left|M_{b}^{G(U)}(e)\right|\right) \\
& =|E(G(U))|^{2}-\sum_{e \in E(G(U))}\left|M_{0}^{G(U)}(e)\right| .
\end{aligned}
$$

Theorem 1. [9]. Let G and H be two connected graphs and let U be a nonempty subset of $V(G)$. Then $P I_{v}(G(U) \Pi H)=|V(H)|(|V(H)|-1) P I_{v}(G(U))+|V(H)| P I_{v}(G)+$ $|V(G)||U| P I_{\nu}(H)$.

Theorem 2. [9]. Let G and H be two connected graphs and let U be a nonempty subset of $V(G)$. Then

$$
\begin{aligned}
P I_{e}(G(U) \Pi H) & =|V(H)|(|V(H)|-1) P I_{e}(G(U))+|V(H)| P I_{e}(G) \\
& +|V(H)||E(H)|\left(|U||E(G)|-\sum_{g g^{\prime} \in E(G(U))}\left|N_{0}^{G(U)}\left(g g^{\prime}\right) \cap U\right|\right) \\
& +|E(G)||U| P I_{v}(H)+|U|^{2} P I_{e}(H)
\end{aligned}
$$

We are now ready to obtain the PI indices of some chemical graphs.

Example 3. Let H be the graph of truncated cuboctahedron (see Figure 1). Then $H=$ $\left(\left(P_{6}\left(U_{1}\right) \Pi P_{2}\right)\left(U_{2}\right) \Pi P_{2}\right)(U 3) \Pi P_{2}$, where $U_{1}=\{1,2,5,6\}, U_{2}=\{7,9,10,12\}$ and $U_{3}=$ $\{1,3,4,6,19,21,22,24\}$. One can see that $P I_{e}\left(P_{6}\left(U_{1}\right) \Pi P_{2}\right)=2 \times 20+2 \times 20+2 \times$ $(4 \times 5)+5 \times 4 \times 2=160$. Also $P I_{e}\left(\left(P_{6}\left(U_{1}\right) \Pi P_{2}\right)\left(U_{2}\right) \Pi P_{2}\right)=2 \times 176+2 \times 160+2 \times 4 \times$ $14+14 \times 4 \times 2=896$. Thus, by Theorem 1, we have

$$
P I_{e}(H)=2 \times 896+2 \times 896+2 \times 8 \times 32+32 \times 8 \times 2=4608 .
$$

Figure 1. The Molecular Graph of Truncated Cuboctahedron.
Example 4. Octanitrocubane is the most powerful chemical explosive with formula $\left.C_{8}\left(\mathrm{NO}_{2}\right)_{8}\right)$, part (a) of Fig. 2. Let H be the molecular graph of this molecule. Then obviously $H=P_{4}(U) \Pi Q_{2}$, where $U=\{2,3\}$. On the other hand, one can easily see that $P I_{e}\left(P_{4}(U)\right)=8$ and $P I_{e}\left(P_{4}\right)=6$ and so, by Theorem 1, we have

$$
P I_{e}\left(P_{4}(U) \Pi Q_{2}\right)=4 \times 3 \times 8+4 \times 6+4 \times 4 \times(2 \times 3)+3 \times 2 \times 16+4 \times 8=344 .
$$

Figure 2. The Molecular Graph of Octanitrocubane.

Figure 3. The Bridge-Cycle Graph.

Example 5. Let $\left\{G_{i}\right\}_{i=1}^{d}$ be a set of finite pairwise disjoint graphs with $v_{i} \in V\left(G_{i}\right)$. The bridge-cycle graph $B C\left(G_{1}, G_{2}, \ldots, G_{d}\right)=B C\left(G_{1}, G_{2}, \ldots, G_{d} ; v_{1}, v_{2}, \ldots, v_{d}\right)$ of $\left\{G_{i}\right\}_{i=1}^{d}$ with respect to the vertices $\left\{v_{i}\right\}_{i=1}^{d}$ is the graph obtained from the graphs G_{l}, \ldots, G_{d} by connecting the vertices v_{i} and v_{i+1} by an edge for all $i=1,2, \ldots, d-1$ and connecting the vertices v_{l} and v_{d} by an edge, see Fig. 3. Suppose that $G_{l}=\ldots=G_{d}=G$. Then we have
$B C\left(G_{1}, G_{2}, \ldots, G_{d}\right) \cong G(U) \Pi C_{d}$, where $|U|=|\{r\}|=1$. On the other hand, It is not so difficult to check that $P I_{e}\left(C_{n}\right)=\left\{\begin{array}{ll}n(n-1) & 2 \nmid n \\ n(n-2) & 2 \mid n\end{array}\right.$ and $P I_{v}\left(C_{n}\right)=\left\{\begin{array}{cc}n(n-1) & 2 \nmid n \\ n^{2} & 2 \mid n\end{array}\right.$. Therefore, if $2 \mid m$, by Theorem 1, we have $P I_{e}\left(G(U) \Pi C_{m}\right)=m(m-l) P I_{e}(G(U))+m P I_{e}(G)+$ $m^{2}\left(2|E(G)|-N_{r}(G)\right)+m(m-2)$ and if $2 \backslash m$, then $P I_{e}\left(G(U) \Pi C_{m}\right)=m(m-1) P I_{e}(G(U))+$ $m P I_{e}(G)+m^{2}\left(2|E(G)|-N_{r}(G)\right)-m|E(G)|+m(m-1)$, where $N_{r}(G)=\mid\{u v \in E(G) \mid$ $\left.d_{G}(u, r)=d_{G}(v, r)\right\} \mid$.

By replacing G with P_{n} (such that r is a pendant vertex of P_{n}) in the above relations, we obtain $P I_{e}$ of $S u n_{m, n-1}$, see [10], as follow:

$$
P I_{e}\left(\text { Sun }_{m, n-1}\right)=\left\{\begin{array}{cc}
m^{2} n^{2}-2 m n+m & 2 \nmid m \\
m^{2} n^{2}-m n-m & 2 \mid m
\end{array} .\right.
$$

In what follows, let $\prod_{i}^{j} f_{i}=1$ and $\sum_{i}^{j} f_{i}=0$ for each $i, j \in\{0,1,2, \ldots\}$, that $i-j$ $=1$. Furthermore, let $\prod_{i}^{j} f_{i}=\sum_{i}^{j} f_{i}=0$ for every $i, j \in\{0,1,2, \ldots\}$, such that $i-j>1$. Also, for a sequence of graphs, $G_{l}, G_{2}, \ldots, G_{n}$, we set $\left|V_{i, j}\right|=\prod_{k=i}^{j}\left|V\left(G_{k}\right)\right|$ and $\left|V_{i, j}^{l}\right|=\prod_{k=i, k \neq l}^{j}\left|V\left(G_{k}\right)\right|$.

Theorem 6. [11]. Suppose $G_{l}, G_{2}, \ldots, G_{n}$ are connected rooted graphs with root vertices r_{l}, ..., r_{n}, respectively. Then

$$
\begin{aligned}
P I_{e}\left(G_{n} \Pi \ldots \Pi G_{2} \Pi G_{l}\right) & =\sum_{i=1}^{n}\left|V_{i+1, n}\right| P I_{e}\left(G_{i}\right)+\sum_{i=1}^{n} \mid V_{i+1, n}\left(\sum_{j=1}^{i-1}\left|E\left(G_{j}\right)\right|\left|V_{j+1, i-l}\right|\right) P I_{v}\left(G_{i}\right) \\
& +\sum_{i=1}^{n}\left((| E (G _ { i }) | - N _ { r _ { i } }) | V _ { i + 1 , n } | \sum _ { j = i + 1 } ^ { n } \left(\left(\left|V\left(G_{j}\right)\right|-1\right)\right.\right. \\
& \left.\left.=\sum_{k=1}^{j-1}\left|E\left(G_{k}\right)\right|\left|V_{k+1, j-l}\right|+\left|E\left(G_{j}\right)\right|\right)\right)
\end{aligned}
$$

where $N_{r_{i}}=\mid\left\{u v \in E\left(G_{i}\right) \mid d_{G_{i}}\left(u, r_{i}\right)=d_{G_{i}}\left(v, r_{i}\right)\right\}$.

Example 7. Let Γ be the graph of octanitrocubane, see part (b) of Figure 6. Then obviously $H=Q_{3} \Pi P_{2}$. On the other hand, one can easily see that $P I_{e}\left(Q_{3}\right)=P I_{\nu}\left(Q_{3}\right)=96$ and $P I_{e}\left(P_{2}\right)$ $=0$ and so, by Theorems 6, we have $P I_{e}\left(P_{6}(U) \Pi Q_{2}\right)=344$.

References

1. P. V. Khadikar, S. Karmarkar, A novel PI index and its applications to QSPR/QSAR studies, J. Chem. Inf. Comput. Sci. 41 (2001) 934-949.
2. P.V. Khadikar, On a novel structural descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113-118.
3. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math. 156 (2008), 1780-1789.
4. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, Linear Algebra Appl. 429 (2008) 2702-2709.
5. L. Barriére, F. Comellas, C. Daflo and M. A. Fiol, The hierarchical product of graphs, Discrete Appl. Math. 157 (2009) 36-48.
6. L. Barriére, C. Dao, M. A. Fiol and M. Mitjana, The generalized hierarchical product of graphs, Discrete Math. 309 (2009) 3871-3881.
7. M. Tavakoli, F. Rahbarnia and A. R. Ashrafi, Distribution of some graph invariants over hierarchical product of graphs, Appl. Math. Comput. 220 (2013) 405-413.
8. K. Pattabiraman, P. Paulraja, Vertex and edge Padmakar-Ivan indices of the generalized hierarchical product of graphs. Discrete Appl. Math. 160 (2012) 13761384.
9. M. Tavakoli, F. Rahbarnia, A. R. Ashrafi, Applications of Generalized Hierarchical Product of Graphs in Computing the Vertex and Edge PI Indices of Chemical Graphs, to appear in Ricerche di Matematica.
10. Y. N. Yeh and I. Gutman, On the sum of all distances in composite graphs, Discrete Math. 135 (1994) 359-365.
11. M. Tavakoli and F. Rahbarnia, The vertex and edge PI indices of generalized hierarchical product of graphs, J. Appl. Math. \& Informatics, 31 (2013) 469-477.

[^0]: -Corresponding author (Email: Mostafa.tavakoli@stu-mail.um.ac.ir).

