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ABSTRACT 

In this paper, some applications of our earlier results in working with chemical graphs are 

presented.  
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1. INTRODUCTION 

Throughout this paper all graphs considered are finite, simple and connected. The distance 

dG(u,v) between the vertices u and v of a graph G is equal to the length of a shortest path 

that connects u and v. Suppose G is a graph with vertex and edge sets V = V(G) and E = 

E(G), respectively, and e = abE(G). The set of edges of G whose distance to the vertex u 

is smaller than the distance to the vertex v is denoted by (e)M G
u . Then the edge PI index of 

G, PIe(G), is defined as PIe(G) = 







 

E(G)uve

G
v

G
u (e)M(e)M  [1,2]. In a similar way, 

(e)NG
a  is defined as the set of vertices closer to the vertex a than to the vertex b. In other 

words, (e)NG
a = {u V(G) | d(u, a) < d(u, b)}. The vertex PI index of G, PIv(G), is defined 

as [| (e)NG
u | + | (e)NG

v |] over all edges of G [3,4]. The edges e = uv and f = xy of G are said 

to be equidistant if min{dG(u, x), dG(u, y)}=min{dG(v, x), dG(v, y)}. For e = uv G, the set 
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of equidistant vertices of e is denoted by (e)NG
0  and the set of equidistant edges of e is 

denoted by (e)M G
0 . Then the above definitions are equivalent to  

PIv(G) = |V(G)||E(G)| – 
E(G)e

G
0 (e)N , 

                                          PIe(G) = |E(G)|
2
 – 

E(G)e

G
0 (e)M .     

A graph G with a specified vertex subset U V(G) is denoted by G(U). Suppose G 

and H are graphs and U  V(G). The generalized hierarchical product, denoted by 

G(U)H, is the graph with vertex set V(G) V(H) and two vertices (g, h) and (g′, h′) are 

adjacent if and only if g = g′ U and hh′  E(H) or, gg′  E(G) and h = h′. This graph 

operation has been introduced by Barriére et al. [5,6] and it has some applications in 

computer science. To generalize this graph operation to n graphs, assume that Gi = (Vi , Ei) 

is a graph with vertex set Vi , 1 ≤ i ≤ N, having a distinguished or root vertex 0. The 

hierarchical product H = GN …G2G1 is the graph with vertices the Ntuples xN … 

x3x2x1, xi  Vi , and edges defined by the following adjacencies: 

xN…x3x2x1






















0.1Nx2x1x)NE(GNyNx1x2x3xNy

0,2x1x)3E(G3y3x1x2x3yNx

0,1x)2E(G2y2x1x2y3xNx

),1E(G1y1x1y2x3xNx

...andif...

:::

andif...

andif...

if...

 

 

We encourage the reader to consult [7] for the mathematical properties of the hierarchical 

product of graphs. 

 

2. MAIN RESULTS 

Let G = (V, E) be a graph and U  V. Following Pattabiraman and Paulraja [8], an u–v path 

through U in G(U) is an u–v path in G containing some vertex w  U (not necessarily 

distinct from the vertices u and v). Let dG(U)(u,v) denote the length of a shortest u –v path 

through U in G. Notice that, if one of the vertices u and v belong to U, then dG(U)(u,v) = 

dG(u,v). A vertex xV(G(U)) is said to be equidistant from e = uvE(G(U)) through U in 

G(U), if dG(U)(u, x) = dG(U)(v, x). For an edge e = ab in G(U), let (e)N
G(U)
0  denote the set of 

equidistant vertices of e through U in G(U) and (e)NG(U)
a  denote the set of vertices closer 

to a than to b through U in G. Then PIv(G(U)) and PIe(G(U)) can be computed by the 

following formula: 
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              PIv(G(U)) = 







 

E(G(U))abe

G(U)
b

G(U)
a (e)N(e)N  

                               =  |V(G(U))||E(G(U))| – 
E(G(U))e

G(U)
0 (e)N . 

The edges e = uv and f = xy of G(U) are said to be equidistant edges through U in 

G(U) if   

min{dG(U)(u, x), dG(U)(u, y)}= min{dG(U)(v, x), dG(U)(v, y)}. 

Let (e)M
G(U)
0  denote the set of equidistant edges of e through U in G(U) and (e)M G(U)

a  

denote the set of edges closer to a than to b through U in G. Then PIe(G(U)) is computed as 

follows: 

              PIv(G(U)) = 







 

E(G(U))abe

G(U)
b

G(U)
a (e)M(e)M  

                               =  |E(G(U))|
2 

 – 
E(G(U))e

G(U)
0 (e)M . 

 

Theorem 1. [9]. Let G and H be two connected graphs and let U be a nonempty subset of 

V(G). Then PIv(G(U)  H) =|V(H)| (|V(H)| – 1) PIv(G(U)) + |V(H)|PIv(G) + 

|V(G)||U|PIv(H). 

 

Theorem 2. [9]. Let G and H be two connected graphs and let U be a nonempty subset of 

V(G). Then 

         PIe(G(U)  H) = |V(H)|(|V(H)| – 1)PIe(G(U)) + |V(H)|PIe(G) 

                                  + |V(H)||E(H)|(|U||E(G)| – 




E(G(U))gg

G(U)
0 U)g(gN  ) 

                                  + |E(G)||U|PIv(H) +|U|
2
PIe(H). 

 

We are now ready to obtain the PI indices of some chemical graphs. 

 

Example 3. Let H be the graph of truncated cuboctahedron (see Figure 1). Then H = 

((P6(U1)  P2)(U2)  P2)(U3)  P2, where U1 = {1, 2, 5, 6}, U2 = {7, 9, 10, 12} and U3 = 

{1, 3, 4, 6, 19, 21, 22, 24}. One can see that PIe(P6(U1)  P2)  =  2  20  +  2   20  +  2  

(4  5) + 5  4  2 = 160. Also PIe((P6(U1)  P2)(U2)  P2) = 2  176 + 2  160 + 2  4  

14 + 14   4   2 = 896. Thus, by Theorem 1, we have 

PIe(H) = 2  896 + 2  896 + 2   8  32 + 32  8  2 = 4608. 
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Figure 1. The Molecular Graph of Truncated Cuboctahedron. 

 

Example 4. Octanitrocubane is the most powerful chemical explosive with formula 

C8(NO2)8), part (a) of Fig. 2. Let H be the molecular graph of this molecule. Then obviously 

H= P4(U)  Q2, where U = {2, 3}. On the other hand, one can easily see that PIe(P4(U))=8 

and PIe(P4) = 6 and so, by Theorem 1, we have  

PIe(P4(U)  Q2) = 4  3   8 + 4  6 + 4  4  (2  3 ) + 3  2  16 + 4  8 = 344. 
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Figure 2. The Molecular Graph of Octanitrocubane. 

 

 

 

 

 
 

Figure 3. The BridgeCycle Graph. 

 

 

Example 5. Let  d 1iiG   be a set of finite pairwise disjoint graphs with viV(Gi). The 

bridgecycle graph BC(G1, G2, …, Gd) = BC(G1, G2, …, Gd; v1, v2, …, vd) of  d 1iiG   with 

respect to the vertices  d 1iiv   is the graph obtained from the graphs G1, …, Gd by 

connecting the vertices vi and vi+1 by an edge for all i = 1, 2, …, d –1 and connecting the 

vertices v1 and vd by an edge, see Fig. 3. Suppose that G1 =  … = Gd = G. Then we have 
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BC(G1, G2, … , Gd)  G(U) Cd, where |U|=|{r}|=1. On the other hand, It is not so 

difficult to check that PIe(Cn)=








n|22)n(n

n|21)n(n
 and PIv(Cn)=



 

n|2n

n|21)n(n
2 . Therefore, if 

2 | m, by Theorem 1, we have PIe(G(U)Cm) = m(m – 1)PIe(G(U)) + mPIe(G) + 

m
2
(2|E(G)| – Nr(G)) + m(m – 2) and if 2 |  m, then PIe(G(U)Cm) =  m(m – 1)PIe(G(U)) + 

mPIe(G) + m
2
(2|E(G)| – Nr(G)) – m|E(G)| + m(m – 1), where Nr(G)=|{uvE(G) | 

dG(u,r)=dG(v,r)}|. 

 

By replacing G with Pn (such that r is a pendant vertex of Pn) in the above relations, 

we obtain PIe of Sunm, n–1, see [10], as follow: 

                                           PIe(Sunm, n–1)=










m|2mmnnm

m|2m2mnnm
22

22

. 

 

In what follows, let 1f
j

i i   and 0
j

i if  for each i, j  {0, 1, 2, …}, that i – j 

= 1. Furthermore, let 0ff
j

i i
j

i i   for every i, j  {0, 1, 2, …}, such that i – j > 1. 

Also, for a sequence of graphs, G1, G2, …, Gn, we set  


j

ik kji, )V(GV  and 

 


j

lki,k k
l
ji, )V(GV . 

 

Theorem 6. [11]. Suppose G1, G2, …, Gn are connected rooted graphs with root vertices r1, 

…, rn, respectively. Then 

PIe(Gn …G2G1)  = )(GPIV)E(GV)(GPIV iv

-1i

1j

1i1,jj

n

1i

n1,i

n

1i

ien1,i 












 











  

                                    +   
 

 
n

1i

n

1ij

jn1,iri 1))V(G((V)N)E(G((
i

 

                                    = )))E(GV)E(G
1j

1k

j1j1,kk




  , 

where  )r(v,d)r(u,d|)E(GuvN iGiGir iii
 . 

 

Example 7. Let Γ be the graph of octanitrocubane, see part (b) of Figure 6. Then obviously 

H= Q3  P2. On the other hand, one can easily see that PIe(Q3) = PIv(Q3) = 96 and PIe(P2) 

= 0 and so, by Theorems 6, we have  PIe(P6(U)Q2) = 344. 
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