Computing GA4 Index of Some Graph Operations

Mahboobeh Saheli and Maryam Jalali Rad ${ }^{\bullet}$
Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan 8731751167, I. R. Iran
Department of Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-51167, I. R. Iran

(Received March 7, 2011)

Abstract

The geometric-arithmetic index is another topological index was defined as $G A(G)=\sum_{u v \in E} \frac{2 \sqrt{\operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v)}}{\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)}$, in which degree of vertex u denoted by $\operatorname{deg}_{G}(u)$. We now define a new version of $G A$ index as $G A_{4}(G)=\sum_{e=u v \in E(G)} \frac{2 \sqrt{\varepsilon_{G}(u) \varepsilon_{G}(v)}}{\varepsilon_{G}(u)+\varepsilon_{G}(v)}$, where $\varepsilon_{G}(u)$ is the eccentricity of vertex u. In this paper we compute this new topological index for two graph operations.

Keywords: Topological index, GA Index, GA $_{4}$ index, graph operations.

1. Introduction

By a graph means a collection of points and lines connecting a subset of them. The points and lines of a graph also called vertices and edges of the graph, respectively. If e is an edge of G, connecting the vertices u and v, then we write $e=u v$ and say " u and v are adjacent". A connected graph is a graph such that there is a path between all pairs of vertices. The fact that many interesting graphs are composed of simpler graphs that serve as their basic building blocks prompts and justifies interest in the type of relationship that exist between various graph-theoretical invariants of composite graphs and of their components. The composite graphs considered here arise from simpler graphs via several binary operations. Such operations are sometimes called graph products, and the resulting graphs are also known as product graphs.

[^0]Let G be a graph on n vertices. We denote the vertex and the edge set of G by $V(G)$ and $E(G)$, respectively. For two vertices u and v of $V(G)$ we define their distance $d_{G}(u, v)$ as the length of a shortest path connecting u and v in G. For a given vertex u of $V(\mathrm{G})$ its eccentricity $\varepsilon_{G}(u)$ is the largest distance between u and any other vertex v of G. Hence, $\varepsilon_{G}(u)=\max _{v \in V(G)} d_{G}(u, v)$ [1-7]. The minimum and maximum eccentricity over all vertices of G are called the radius and diameter of G and denoted by $R(G)$ and $D(G)$, respectively.

The Zagreb indices have been introduced more than thirty years ago by Gutman and Trinajestić [8]. They are defined as:

$$
\left.M_{1}(G)=\sum_{v \in V(G)}\left(\operatorname{deg}_{G}(v)\right)^{2} \text { and } M_{2(} G\right)=\sum_{u v \in E(G)} \operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v) .
$$

Now we define a new version of Zagreb indices as follows [9]:

$$
M_{1}^{*}(G)=\sum_{u v \in E(G)} \varepsilon(u)+\varepsilon(v) \text { and } M_{2}^{*}(G)=\sum_{u v \in E(G)} \varepsilon(u) \varepsilon(v) .
$$

It is easy to see that for every connected graph $G, M_{2}^{*}(G)=\xi(G)$.
A class of geometric-arithmetic topological indices may be defined as $G A_{\text {general }}=\sum_{u v \in E} \frac{2 \sqrt{Q_{u} Q_{v}}}{Q_{u}+Q_{v}}$, where Q_{u} is some quantity that in a unique manner can be associated with the vertex u of the graph G, see [10]. The first member of this class was considered by Vukicević and Furtula [11], by setting Q_{u} to be the

$$
G A(G)=\sum_{u v \in E} \frac{2 \sqrt{\operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v)}}{\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)},
$$

where degree of vertex u denoted by $\operatorname{deg}_{G}(u)$. The second member of this class was considered by Fath-Tabar et al. [12] by setting Q_{u} to be the number $n_{u}=n_{u}(e \mid G)$ of vertices of G lying closer to the vertex u than to the vertex v for the edge $u v$ of the graph G :

$$
G A_{2}(G)=\sum_{u v \in E} \frac{2 \sqrt{n_{u} n_{v}}}{n_{u}+n_{v}} .
$$

The third member of this class was considered by Zhou et al. [13] by setting Q_{u} to be the number $m_{u}=m_{u}(e \mid G)$ of edges of G lying closer to the vertex u than to the vertex v for the edge $u v$ of the graph G :

$$
G A_{3}(G)=\sum_{u v \in E} \frac{2 \sqrt{m_{u} m_{v}}}{m_{u}+m_{v}} .
$$

The fourth member of this class was defined by Ashrafi et al. [14] as follows:

$$
G A_{4}(G)=\sum_{u v \in E} \frac{2 \sqrt{\varepsilon_{G}(u) \varepsilon_{G}(v)}}{\varepsilon_{G}(u)+\varepsilon_{G}(v)},
$$

where $\varepsilon_{G}(u)$ denotes to the eccentricity of vertex u.
A fullerene graph is a cubic 3-connected plane graph with (exactly 12) pentagonal faces and hexagonal faces. Let F_{n} be a fullerene graph with n vertices. By the Euler formula one can see that F_{n} has 12 pentagonal and $n / 2-10$ hexagonal faces [15,16].

Sometimes $G A_{4}$ is a better descriptor for molecular structures than $G A$ index. For example, consider two distinct isomers of fullerene C_{30} depicted in Figure 1. Since every fullerene graph is 3 regular, then $G A\left(C_{38}: 1\right)=G A\left(C_{38}: 2\right)$. But they have different $G A_{4}$ value. In other words, $G A_{4}\left(C_{38}: 1\right)=6$ and $G A_{4}\left(C_{38}: 2\right)=8$.

Figure 1. Two distinct isomers of C_{38}.

Throughout this paper our notation is standard and mainly taken from standard books of graph theory such as $[17,18]$ and $[19-21]$. All graphs considered in this paper are simple and connected.

2. Main Results and Discussion

The aim of this section is to compute $G A_{4}(G)$, for some graph operations. Before going to calculate this index for graph operations, we must compute $G A_{4}(G)$, for some well-known class of graphs.

Example 1. Let K_{n} denotes the complete graph on n vertices. Then for every $v \in V\left(K_{n}\right)$, $\operatorname{deg}_{G}(v)=n-1$ and $\varepsilon_{G}(v)=1$. This implies $\quad G A_{4}\left(K_{n}\right)=\sum_{u v \in E(G)} \frac{2 \sqrt{1}}{2}=\frac{n(n-1)}{2}$.

Example 2. Let C_{n} denotes the cycle of length n. If n is even then for every i, then i-th row of distance matrix of C_{n} is $1,2, \ldots, 0, \ldots,(n-1) / 2, n / 2,(n-1) / 2, \ldots, 2,1$. When n is odd then i the it is equal to $1,2, \ldots, 0, \ldots,(n-1) / 2,(n-1) / 2, \ldots, 2,1$. Hence,

$$
G A_{4}\left(C_{n}\right)=\left\{\begin{array}{cl}
\sum_{u v \in E(G)} \frac{2 \sqrt{\frac{n}{2} \cdot \frac{n}{2}}}{\frac{n}{2}+\frac{n}{2}}=n & 2 \mid n \\
\sum_{u v \in E(G)} \frac{2 \sqrt{\frac{n-1}{2} \cdot \frac{n-1}{2}}}{\frac{n-1}{2}+\frac{n-1}{2}}=n & 2 \nmid n
\end{array} .\right.
$$

Example 3. Let S_{n} be the star graph with $n+1$ vertices, Figure 2. The central vertex is denoted by x and others vertices by $u_{1}, u_{2}, \ldots, u_{\mathrm{n}}$. Then for every $1 \leq i, j \leq n$, we have $d_{G}(x$, $\left.u_{i}\right)=1$ and $d_{G}\left(u_{i}, u_{j}\right)=2$. So, $G A_{4}\left(S_{n}\right)=\sum_{u v \in E(G)} \frac{2 \sqrt{2}}{3}=\frac{2 \sqrt{2}}{3} n$.

Example 4. A wheel W_{n} is a graph of order n which contains a cycle of order n, and for which every vertex in the cycle is connected to other graph vertices, Figure 3. Suppose the central vertex is denoted by x and the others by $u_{1}, u_{2}, \ldots, u_{\mathrm{n}}$. Then for every $1 \leq i, j \leq n$ we have $d_{G}\left(x, u_{i}\right)=1, d_{G}\left(u_{i}, u_{i-1}\right)=1, d_{G}\left(u_{i}, u_{i+1}\right)=1$ and $d_{G}\left(u_{i}, u_{j}\right)=2 j(j \neq i-1, i+1)$. So, $G A_{4}\left(W_{n}\right)=\frac{2 \sqrt{2}}{3} n+n=\left(\frac{2 \sqrt{2}}{3}+1\right) n$.

Figure 2. The Star Graph with $n+1$ Vertices.

Theorem 1.

$$
G A_{4}(G) \geq \frac{2 \sqrt{M_{2}^{*}(G)}}{M_{1}^{*}(G)}
$$

Proof.

$$
\begin{aligned}
{\left[G A_{4}(G)\right]^{2} } & =\sum_{u v \in E} \frac{4 \varepsilon(u) \varepsilon(v)}{(\varepsilon(u)+\varepsilon(v))^{2}}+4 \sum_{u v \neq u^{\prime} v^{\prime}} \frac{\sqrt{\varepsilon(u) \varepsilon(v)} \sqrt{\varepsilon\left(u^{\prime}\right) \varepsilon\left(v^{\prime}\right)}}{(\varepsilon(u)+\varepsilon(v))\left(\varepsilon\left(u^{\prime}\right)+\varepsilon\left(v^{\prime}\right)\right)} \\
& \geq \sum_{u v \in E} \frac{4 \varepsilon(u) \varepsilon(v)}{(\varepsilon(u)+\varepsilon(v))^{2}} \geq \frac{M_{2}^{*}(G)}{\left[M_{1}^{*}(G)\right]^{2}} .
\end{aligned}
$$

Figure 3. The Wheel Graph with $n+1$ Vertices.

Theorem 2. Let G be a graph with $\mathrm{m} \geq 2$ edges. Then

$$
\frac{2 M_{2}^{*}(G)}{M_{1}^{*}(G)} \leq G A_{4}(G) \leq \frac{2}{3} M_{2}^{*}(G)
$$

Proof. We can suppose $\varepsilon(u)=\varepsilon_{G}(u)$ for the vertex u in G. It is easy to see that for every $e=$ $u v$ in $E(G), \varepsilon(u)+\varepsilon(v) \geq 3$. By the definition of $G A_{4}$ index we have

$$
\begin{aligned}
G A_{4}(G) & =\sum_{u v \in E} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} \leq \frac{2}{3} \sum_{u v \in E} \sqrt{\varepsilon(u) \varepsilon(v)} \\
& \leq \frac{2}{3} \sum_{u v \in E} \varepsilon(u) \varepsilon(v)=\frac{2}{3} M_{2}^{*}(G) .
\end{aligned}
$$

On the other hand,

$$
G A_{4}(G)=\sum_{u v \in E} \frac{2 \sqrt{\varepsilon(u) \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} \geq 2 \frac{\sum_{u v \in E} \sqrt{\varepsilon(u) \varepsilon(v)}}{M_{1}^{*}(G)}=\frac{2 M_{2}^{*}(G)}{M_{1}^{*}(G)} .
$$

This completes the proof.
The join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}. It is easy to see that $\left|V\left(G_{1}+G_{2}\right)\right|=n_{1} n_{2}$ and $\left|E\left(G_{1}+G_{2}\right)\right|=m_{1}+m_{2}+n_{1} n_{2}$.

Lemma 3 [19].

$$
\varepsilon_{G_{1}+G_{2}}(u)=\left\{\begin{array}{llll}
1 & \varepsilon_{G_{1}}(u)=1 & \text { or } & \varepsilon_{G_{2}}(u)=1 \\
2 & \varepsilon_{G_{1}}(u) \geq 2 & \text { or } & \varepsilon_{G_{2}}(u) \geq 2
\end{array} .\right.
$$

Theorem 4. Let G_{1} and G_{2} be connected graphs, where $w_{i}=\left|\left\{u \in V\left(G_{i}\right), \varepsilon_{G_{i}}(u)=1\right\}\right|$ for $\mathrm{i}=$ $1,2$.

$$
G A_{4}\left(G_{1}+G_{2}\right)=m_{1}+m_{2}+n_{1} n_{2}+\frac{2 \sqrt{2}}{3}\left(\omega_{1}+\omega_{2}\right)\left(n_{1}+n_{2}+\omega_{1}+\omega_{2}\right) .
$$

Proof. Let $\varepsilon(u)=\varepsilon_{G_{1}+G_{2}}(u)$. So, we have

$$
\begin{aligned}
G A_{4}\left(G_{1}+G_{2}\right) & =\sum_{u v \in E\left(G_{1}+G_{2}\right)} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} \\
& =\sum_{\substack{u v \in E\left(G_{1}+G_{2}\right), u v \in E\left(G_{1}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}+\sum_{\substack{u v \in E\left(G_{1}+G_{2}\right), u v \in E\left(G_{2}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}+\sum_{\substack{u v \in \in\left(G_{1}+G_{2}\right), u v \in E\left(G_{1}\right), u \notin \in E\left(G_{2}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} .
\end{aligned}
$$

By using table 1 , it is easy to see that:

$$
\begin{aligned}
\sum_{\substack{u v \in\left(G_{1}+G_{2}\right), u v \in E\left(G_{1}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} & =\sum_{\varepsilon(u)=\varepsilon(v)=1} 1+\sum_{\substack{\varepsilon(u)=1 \\
\varepsilon(v)=2}} \frac{2 \sqrt{2}}{3}+\sum_{\substack{\varepsilon(u)=\varepsilon(v)=2}} 1 \\
& =\binom{w_{1}}{2}+\frac{2 \sqrt{2}}{3} w_{1} \times\left(n_{1}-w_{1}\right)+\left(m_{1}-\binom{w_{1}}{2}-w_{1} \times\left(n_{1}-w_{1}\right)\right) \\
& =m_{1}+\frac{2 \sqrt{2}}{3}\left(w_{1} \times\left(n_{1}-w_{1}\right)\right),
\end{aligned}
$$

$$
\sum_{\substack{u v \in\left(G G_{1}+G_{2}\right) \\ u v \in E\left(G_{1}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}=\sum_{\varepsilon(u)=\varepsilon(v)=1} 1+\sum_{\substack{\varepsilon(u)=1, \varepsilon(v)=2}} \frac{2 \sqrt{2}}{3}+\sum_{\substack{\varepsilon(u)=\varepsilon(v)=2}} 1
$$

$$
=\binom{w_{2}}{2}+\frac{2 \sqrt{2}}{3} w_{2} \times\left(n_{2}-w_{2}\right)+\left(m_{2}-\binom{w_{2}}{2}-w_{2} \times\left(n_{2}-w_{2}\right)\right)
$$

$$
=m_{2}+\frac{2 \sqrt{2}}{3}\left(w_{2} \times\left(n_{2}-w_{2}\right)\right) .
$$

For computing the term $\sum_{\substack{u v \in E\left(G_{1}+G_{2}\right), u v \in E\left(G_{1}\right), u v \in\left(G_{2}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)}$, according to table 1 we should to consider the following classes of edges:

Case 1: Number of edges with $\varepsilon_{G_{1}}(u)=\varepsilon_{G_{2}}(v)=1$ is $w_{1} \times w_{2}$, where $u v \in E\left(G_{1}+G_{2}\right), u v \notin E\left(G_{1}\right), u v \notin E\left(G_{2}\right)$.

Case 2: Number of edges with $\varepsilon_{G_{1}}(u)=1$ and $\varepsilon_{G_{2}}(v)=2$ is

$$
\left(n_{1}-w_{1}\right) \times w_{2}+\left(n_{2}-w_{2}\right) \times w_{1} .
$$

Case 3: Number of edges with $\varepsilon_{G_{1}}(u)=\varepsilon_{G_{2}}(v)=2$ is $\left(n_{1}-w_{1}\right) \times\left(n_{2}-w_{2}\right)$. Therefore,

$$
\begin{aligned}
\sum_{\substack{u v \in E\left(C_{G^{\prime}}+G_{2}\right), u v \notin E \in\left(G_{1}\right), u v \in E\left(G_{1}\right)}} \frac{2 \sqrt{\varepsilon(u) \cdot \varepsilon(v)}}{\varepsilon(u)+\varepsilon(v)} & =\sum_{\varepsilon_{G_{1}}(u)=\varepsilon_{G_{2}}(v)=1} 1+\sum_{\substack{\varepsilon_{G_{1}}(u)=1, \varepsilon_{G_{2}}(v)=2}} \frac{2 \sqrt{2}}{3}+\sum_{\varepsilon_{G_{1}}(u)=\varepsilon_{G_{2}}(v)=2} 1 \\
& =w_{1} w_{2}+\frac{2 \sqrt{2}}{3}\left(\left(n_{1}-w_{1}\right) w_{2}+\left(n_{2}-w_{2}\right) w_{1}\right)+\left(n_{1}-w_{1}\right)\left(n_{2}-w_{2}\right) .
\end{aligned}
$$

Finally, we have:

$$
G A_{4}\left(G_{1}+G_{2}\right)=m_{1}+m_{2}+n_{1} n_{2}+\frac{2 \sqrt{2}-3}{3}\left(n_{1}+n_{2}\right)\left(w_{1}+w_{2}\right)-\frac{2 \sqrt{2}-3}{3}\left(w_{1}+w_{2}\right)^{2} .
$$

Corollary 5. If $w_{1}=w_{2}=0$, then $G A_{4}\left(G_{1}+G_{2}\right)=m_{1}+m_{2}+n_{1} n_{2}=\left|E\left(G_{1}+G_{2}\right)\right|$.
Lemma 6 [18]. Let $G_{1}, \ldots, G_{\mathrm{k}}$ be some connected graphs. Then:

1) $\left|E\left(G_{1}+\cdots+G_{k}\right)\right|=\sum_{i=1}^{k}\left|E\left(G_{i}\right)\right|+\frac{1}{2} \sum_{i=1}^{k}\left|V\left(G_{i}\right)\right| \sum_{\substack{j=1 \\ j \neq i}}^{k}\left|V\left(G_{j}\right)\right|$

$$
=\sum_{i=1}^{k} m_{i}+\frac{1}{2} \sum_{i=1}^{k} n_{i} \sum_{\substack{j=1 \\ j \neq i}}^{k} n_{j},
$$

2) $\varepsilon_{\left(G_{1}+\cdots+G_{k}\right)}(u)=\left\{\begin{array}{lll}1 & \exists i: & \varepsilon_{G_{i}}(u)=1 \\ 2 & \exists i: & \varepsilon_{G_{i}}(u) \geq 2\end{array}\right.$.

Table 1. Values of $\varepsilon_{G}(u), \varepsilon_{G}(v)$ for edges $e=u v$.

Graph	$\boldsymbol{G}_{\mathbf{1}}$	\boldsymbol{G}_{2}
\#Vertices	n_{1}	n_{2}
\#Edges	m_{1}	m_{2}
\#Edges with $\varepsilon_{G}(u)=\varepsilon_{G}(v)=1$	$\binom{w_{1}}{2}$	$\binom{w_{2}}{2}$
\# Edges with $\varepsilon_{G}(u)=1, \varepsilon_{G}(v) \geq 2$	$w_{1} \times\left(n_{1}-w_{1}\right)$	$w_{2} \times\left(n_{2}-w_{2}\right)$
\#Edges with $\varepsilon_{G}(u) \geq 2, \varepsilon_{G}(v) \geq 2$	$m_{1}-\binom{w_{1}}{2}-w_{1} \times\left(n_{1}-w_{1}\right)$	$m_{2}-\binom{w_{2}}{2}-w_{2} \times\left(n_{2}-w_{2}\right)$
\# Vertices with $\varepsilon_{G}(u)=1$	w_{1}	w_{2}

Theorem 7. Let $G_{1}, \ldots, G_{\mathrm{k}}$ be some connected graphs. Then:

$$
G A_{4}\left(G_{1}+\cdots+G_{k}\right)=m+\frac{2 \sqrt{2}-3}{3}+\sum_{i=1}^{k} n_{i} \times \sum_{i=1}^{k} w_{i}-\frac{2 \sqrt{2}-3}{3}\left(\sum_{i=1}^{k} w_{i}\right)^{2} .
$$

Corollary 8. If $\sum_{i=1}^{k} w_{i}=0$, then $G A_{4}\left(G_{1}+\cdots+G_{k}\right)=\left|E\left(G_{1}+\cdots+G_{k}\right)\right|=m$.
The disjunction $G_{1} \vee G_{2}$ of graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{1}, v_{1}\right)$ is adjacent with $\left(u_{2}, v_{2}\right)$ whenever $u_{1} u_{2} \in E\left(G_{1}\right)$ or $v_{1} v_{2} \in E\left(G_{2}\right)$.

Further, $\left|V\left(G_{1} \vee G_{2}\right)\right|=n_{1} n_{2}$ and $\left|E\left(G_{1} \vee G_{2}\right)\right|=m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-2 m_{1} m_{2}$.

Lemma 9 [19].

$$
\varepsilon_{G_{1} \vee G_{2}}(a, x)=\left\{\begin{array}{llll}
1 & \varepsilon_{G_{1}}(a)=1 & \text { and } & \varepsilon_{G_{2}}(x)=1 \\
2 & \varepsilon_{G_{1}}(a) \geq 2 & \text { or } & \varepsilon_{G_{2}}(x) \geq 2
\end{array} .\right.
$$

Theorem 10.

$$
G A_{4}\left(G_{1} \vee G_{2}\right)=m+\frac{2 \sqrt{2}-3}{3}\left(w_{1} w_{2} \times\left(n_{1} n_{2}-w_{1} w_{2}\right)\right)
$$

Proof.
$G A_{4}\left(G_{1} \vee G_{2}\right)=\sum_{(a, x)(b, y) \in E\left(G_{1} \vee G_{2}\right)} \frac{2 \sqrt{\varepsilon(a, x) \cdot \varepsilon(b, y)}}{\varepsilon(a, x)+\varepsilon(b, y)}=\sum_{\substack{\varepsilon(a, x)=1,1 \\ \varepsilon(b, y)=1}} 1+\sum_{\substack{\varepsilon(a, x)=1, \varepsilon(b, y)=2}} \frac{2 \sqrt{2}}{3}+\sum_{\substack{\varepsilon(a, x)=2, \varepsilon(b, y)=2}} 1$.

The number of edges $e=u v$ with $\varepsilon(u)=\varepsilon(v)=1$ is $\binom{w_{1} w_{2}}{2}$. Similarly, it is easy to see the number of edges $e=u v$ with $\varepsilon(u)=1$ and $\varepsilon(v)=2$ is $w_{1} w_{2} \times\left(n_{1} n_{2}-1-\left(w_{1} w_{2}-1\right)\right)=w_{1} w_{2} \times\left(n_{1} n_{2}-w_{1} w_{2}\right)$. Finally, the number of edges e $=u v$ with $\varepsilon(u)=\varepsilon(v)=2$ is $m-\binom{w_{1} w_{2}}{2}-w_{1} w_{2} \times\left(n_{1} n_{2}-w_{1} w_{2}\right)$.

Corollary 11. If $w_{1}=0$ or $w_{2}=0$, then $G A_{4}\left(G_{1} \vee G_{2}\right)=m=\left|E\left(G_{1} \vee G_{2}\right)\right|$.

The symmetric difference $G_{1} \oplus G_{2}$ of two graphs G_{1} and G_{2} is the graph with vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \oplus G_{2}\right)=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \mid u_{1} v_{1} \in E\left(G_{1}\right)\right.$ or $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right\}$. Also, $\left|V\left(G_{1} \oplus G_{2}\right)\right|=n_{1} n_{2}$ and $\left|E\left(G_{1} \oplus G_{2}\right)\right|=m_{1} n_{2}^{2}+m_{2} n_{1}^{2}-4 m_{1} m_{2}$.

Lemma 12 [19]. $\varepsilon_{G_{1} \oplus G_{2}}(a, x)=2$.
Theorem 13. $G A_{4}\left(G_{1} \oplus G_{2}\right)=\left|E\left(G_{1} \oplus G_{2}\right)\right|$.
Proof. $G A_{4}\left(G_{1} \oplus G_{2}\right)=\sum_{(a, x)(b, y) \in E\left(G_{1} \oplus G_{2}\right)} \frac{2 \sqrt{\varepsilon(a, x) \cdot \varepsilon(b, y)}}{\varepsilon(a, x)+\varepsilon(b, y)}=\sum_{(a, x)(b, y) \in E\left(G_{1} \oplus G_{2}\right)} 1$.

REFERENCES

1. V. Sharma, R. Goswami and A. K. Madan, Eccentric connectivity index: a novel highly discriminating topological descriptor for structure-property and structureactivity studies, J. Chem. Inf. Comput. Sci. 37 (1997) 273 -282.
2. H. Dureja and A. K. Madan, Superaugmented eccentric connectivity indices: newgeneration highly discriminating topological descriptors for QSAR/QSPR modeling, Med. Chem. Res. 16 (2007) 331-341.
3. V. Kumar, S. Sardana and A. K. Madan, Predicting anti-HIV activity of 2,3-diary 1-1,3-thiazolidin-4-ones: computational approaches using reformed eccentric connectivity index, J. Mol. Model. 10 (2004) 399-407.
4. M. Fischermann, A. Homann, D. Rautenbach, L. A. Szekely and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137.
5. S. Gupta, M. Singh and A. K. Madan, Application of graph theory: relationship of eccentric connectivity index and wiener's index with anti-inflammatory activity, J. Math. Anal. Appl. 266 (2002) 259-268.
6. S. Sardana and A. K. Madan, Application of graph theory: relationship of molecular connectivity index, Wiener's index and eccentric connectivity index with diuretic activity, MATCH Commun. Math. Comput. Chem. 43 (2001) 85-98.
7. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
8. N. Trinajstić and I. Gutman, Mathematical Chemistry, Croat. Chem. Acta 75 (2002) 329-356.
9. M. Ghorbani and M. A. Hosseinzadeh, A New Version of Zagreb Indices, Filomat 26(1) (2012) 93 - 100.
10. B. Furtula, A. Graovac and D. Vukičević, Atom-bond connectivity index of trees, Disc. Appl. Math. 157 (2009) 2828 - 2835.
11. D. Vukičević and B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 46 (2009) 1369-1376.
12. G. H. Fath-Tabar, B. Furtula and I. Gutman, A new geometric--arithmetic index, J. Math. Chem. 47 (2010) $477-486$.
13. B. Zhou, I. Gutman, B. Furtula and Z. Du, On two types of geometric-arithmetic index, Chem. Phys. Lett. 482 (2009) 153 - 155.
14. M. Ghorbani and A. Khaki, A note on the fourth version of geometric-arithmetic index, Optoelectron. Adv. Mater. - Rapid Comm. 4(12) (2010) 2212-2215.
15. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C 60 : Buckminsterfullerene, Nature 318 (1985) 162-163.
16. H. W. Kroto, J. E. Fichier and D. E Cox, The Fullerene, Pergamon Press, New York, 1993.
17. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538
18. D. B. West, Introduction to Graph theory, Prentice Hall, Upper Saddle River, 1996.
19. T. Doslic, M. Ghorbani and M. A. Hosseinzadeh, Eccentric connectivity polynomial of some graph operations, Util. Math. 84 (2011) 297-309.
20. M. Ghorbani, GA index of $\mathrm{TUC}_{4} \mathrm{C}_{8}(\mathrm{R})$ nanotube, Optoelectronics and Advanced Materials-(RC) 4(2) (2010) 261-263.
21. A. R. Ashrafi, M. Saheli and M. Ghorbani, The eccentric connectivity index of $\mathrm{TUC}_{4} \mathrm{C}_{8}(R)$ nanotubes, J. Comput. Appl. Math. 235 (2011) 4561 - 4566.

[^0]: -Corresponding author.(e-mail: jalali6834@gmail.com)

