Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)2. In this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we obtain the fist Zagreb index of some graph operations.
Proceedings of the First Iranian Conference on Chemical Graph Theory, Shahid Rajaee Teacher Training University, Tehran, October 6 - 7, 2010 (Ed. M. Ghorbani)
TAVAKOLI, M., & RAHBARNIA, F. (2012). Note on Properties of First Zagreb Index of Graphs. Iranian Journal of Mathematical Chemistry, 3(Supplement 1), 1-5. doi: 10.22052/ijmc.2012.5269
MLA
M. TAVAKOLI; F. RAHBARNIA. "Note on Properties of First Zagreb Index of Graphs", Iranian Journal of Mathematical Chemistry, 3, Supplement 1, 2012, 1-5. doi: 10.22052/ijmc.2012.5269
HARVARD
TAVAKOLI, M., RAHBARNIA, F. (2012). 'Note on Properties of First Zagreb Index of Graphs', Iranian Journal of Mathematical Chemistry, 3(Supplement 1), pp. 1-5. doi: 10.22052/ijmc.2012.5269
VANCOUVER
TAVAKOLI, M., RAHBARNIA, F. Note on Properties of First Zagreb Index of Graphs. Iranian Journal of Mathematical Chemistry, 2012; 3(Supplement 1): 1-5. doi: 10.22052/ijmc.2012.5269