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ABSTRACT 
 

In this paper, we consider RNA structures with arc-length 4 . First, we represent these 
structures as matrix models and zero-one linearprogramming problems. Then, we obtain an 
optimal solution for this problemusing an implicit enumeration method. The optimal solution 
corresponds toan RNA structure with the maximum number of hydrogen bonds. 
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1.  INTRODUCTION 
 
A problem in mathematical biology is enumeration of RNA structures. The RNAhas an 
important role within cells and also, its functions depend on the structure of theRNA 
molecules. Hence, understanding of its helical configuration is important. TheRNA 
molecule is a sequence of four nucleotides A, C, G and U which plays an importantrole in 
Biological reactions. These nucleotides are connected to each other via hydrogenbonds. 
The formation of these bonds stabilizes the molecule by lowering its free energy[2]. The 
RNA structures can be displayed in various ways such as tree, linear encodingof tree, 
coarse grained representation, homeomorphically irreducible tree and diagram[3, 4]. In this 
paper, we represent another two models for RNA structures. Accordingto [4], the diagram 
representation is defined as following: 

Let ),(
nn GGn EVG   be a directed graph such that 

 
   .1|),(and,,1][ njijiEnnV

nn GG    

 

nGV and
nGE  are called the sets of vertices and arcs, respectively. Each directed graphcan be 

displayed as a diagram in which the vertices  n,,1  are placed on a horizontalline and the 

arcs ),( ji , where ji  , can be displayed above the line. Because of linearordering of the 

vertices, the direction of the arcs is omitted. The vertices andarcs show the nucleotides and 
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hydrogen bonds, respectively. We attribute two parameters to the diagrams: the minimum 

arc-length,  ,  the minimum stack-length, . In diagram representation, the length of an arc 
),( ji  is ij   and a stack of length  is a sequence of the parallel arcs like 

)))1(),1((,),1,1(),,((   jijiji  , see Figure 1. We denote the number of RNA 

structures with 4  and 1  over ][n  by )(1,4 nS . 

 
 
 
 
 
 
 

Figure1. RNA Structure with .2,4    
 

The remainder of this paper is organized as follows. In sections 2 and 3, we 
represent RNA structures with arc-length 4 and stack-length 1  as matrix models and 
zero-one linear programming problems, respectively. Also, we express the results 
forenumeration of RNA structures. In section 4, we use the additive algorithm for solving 
linear programming problems with binary variables only [1]. The general notion of the 

additivealgorithm is based on testing a few number of possible solutions, m2  (in which m is 
thenumber of variables), of a problem instead of all solutions. In other words, through 
thismethod, some of the possible solutions of the problem are left unexamined. Also,the 
zero-one linear programming problems can be solved using each of the generalinteger 
programming techniques. Finally, conclusions and future works are discussed insection 5. 

 
2.  MATRIX MODELS 
 

Each RNA structure over  ][n , nG , corresponds to a nn   matrix. We display this 

matrix by ][)( ijn mGM   such that 

 

 

Theorem 1. Suppose nG  is an RNA structure with arc-length 4 over ][n . Then we have 
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matrix. 
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Proof. For all ),( ji , where ji  ,
nGEji ),( . Therefore, )( nGM  is an upper triangular 

matrix. Since nG  is a directed graph with arc length 4 ,  we have
nGEji ),( and 0ijm  

for all ),( ji , where 3 ij . Therefore, three diagonals above theprincipal diagonal are 

zero. Then, the matrix )( nGM  is of the form (1).                                                                   � 

 
We now write the upper triangular matrix 12A  as follows: 

 
 

 
 
Theorem 2. )(1,4 nS is equal to the number of situations in which the entries aboveand on 

the principal diagonal in 12A can be equal to 1 such that for each 41  ni and nj 5 , 

at most one of the entries  
 

 jnjinijnjjinii mmmmmmmm )4(1)4(1)4()4( ,,,,,,,,,,,    

be 1. 
 

Proof. Let nG is an RNA structure with arc-length 4 over ][n . The degree of each vertex 

nG is at most 1. Therefore, each row and column 12A  is0 or ke , where 41  nk . 

Suppose that there exist 41  ni  and nj 5 so that 1ijm . Then 
nGEji ),( . Since 

the degree of each vertex nG   is at most 1,we have 
nGEhiik ),(),,(  for each ik  and ih  , 

where jh  . Similarly, we have
nGEjkhj ),(),,( for each jh  and jk  , where ik  . 

This completes our argument.                                                                                                 � 
 

3. ZERO-ONE LINEAR PROGRAMMING PROBLEMS 

Here, we present a zero-one linear programming problem for displaying of RNA structures 

with arc-length 4  and stack-length 1 .Since each row of the matrix 12A is 0 or ke , where 

41  nk , we have the following constraints: 
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Similarly, since each column of matrix 12A is 0 or ke , where 41  nk , we have the 

following constraints: 
 

 

 

We also know that the degree of each vertex is at most 1. Therefore, we have 
thefollowing constraints: 
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Based on the following lemma, some of the constraints are extra and they can 
beomitted. 
 
Lemma 1. Let  0,|  xbAxxS , where A  is a nm  matrix with rank m  and mb R . 

Let two constraints 

ijkkkik bxxxxbxx    111  and  

belong to the set of constraints bAx  . Then the constraint ik bxx 1 is extra. 

 

Proof. Suppose that S   be the feasible region after deleting the constraint ik bxx 1 . 

Let the constraint ik bxx 1  isn't extra. Then SS  . Let 

Sxx n  ),,( 1  and Sxx n  ),,( 1  .    

Therefore, 

. and 111 ijkkkik bxxxxbxx     

 

Introducing the slack variables 0y and 0z , we have the following constraints in 

standard form:  
 

.and 111 ijkkkik byxxxxbzxx     

Therefore, 
              (3) 

 
On the other hand, 

,01   zyxx jkk                                                   (4) 

 

.01   zyxx jkk 
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Since 0,,,1   yxx jkk  and 0z . But, this is a contradiction. Then SS  .                       � 

According to Lemma 1, the constraints )(b and )(c are extra. Therefore, we can 

delete them. Now, we define the Problem A as follows: 
 
Problem A: 
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where  4|),(  ijjiE .  

 
The number of variables and constraints of the Problem A has been presented 

inTable 1. 
 

Theorem 3. )(1,4 nS is equal to the number of feasible solutions of the Problem A. Also, 

thenumber of optimal solutions of the Problem A is equal to the number of RNA structures 
with arc length 4  and maximum number of arcs over ][n . 

 
Proof. The Problem A is written on the basis of the matrix model (1). Therefore, Theorem 

2 guarantees that )(1,4 nS  is equal to the number of feasible solutions. Sincethe objective 

function is equal to the sum of the variables and the Problem A is themaximization 
problem, then among the feasible solutions, the optimal solution belongs to the one in 

which the maximum number of ijx variables would be equal to 1. So, the optimal solution 

has maximum number of arcs over ][n .                                                                                 � 
 

4. USING ADDITIVE ALGORITHM FOR SOLVING THE PROBLEM A 
 
There are different methods for solving a zero-one linear programming problem such as the 
additive algorithm. For using additive algorithm, a problem must possess three following 
conditions: 
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1. Its objective function should be in the form of minimization. 
2. The coefficients of the objective function should be nonnegative. 
3. All the constraints must be of the   type. 

 

Table 1.The Number of Variables and Constraints of the Problem A. 
 

n 6 7 8 9 10 11 12n  
The number of variables 3 6 10 15 21 28 608 n  

The number of 
constraints 

2 4 6 9 10 11 n  

 
Bysetting ijij xx  1 , the Problem A is converted into the following problem: 
 

Problem B: 
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Now, we can apply the additive algorithm for solving the Problem B. In Table 2, we 
list the optimal solutions for 10,,6 n . 

Example 1. For n = 7, the problems A is as follows: 

0,,,,,
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1..
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 Using of additive algorithm, the optimal solution of the Problem A is equal to 
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.3,1,0 *
372615271716  zxxxxxx  

This solution is corresponding to the RNA structure which is shown in Figure 2.  

 

     

 

                                                Figure 2. Optimal Structure for .7n  

 The matrix model of this optimal structure is as follows: 

 

 

 

Table2. The Optimal Solutions of the Problem A, for .10,,6 n  
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5. CONCLUSION 
 
Poolsap et al. in [5] represented an integer programming problem for the RNA structures. 
Their model is complicated with many variables. But, in here, we represented another 
programming problem for the  RNAstructures such that the number of variables is lessthan 
the number of variables in [5]. The optimal RNA structure obtained by solving this problem 
is of arc-length 4  and has the maximum number of hydrogen bonds. Inother words, 
formation of these bonds stabilizes the structure by lowering its free energy over .][n If the 

enumeration of the feasible solutions of the zero-one linear programming problem is 
possible, then we are able to enumerate the RNA structures with arc-length 4 over 

][n .also, in this case, the number of optimal solutions will be equal to the number of 

optimal RNA structures. Therefore, a future work can be the enumeration of the RNA 
structures using matrix and linear programming models. 
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