Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most colours, which is for a fixed graph G , a polynomial in , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.
ALIKHANI, S., & IRANMANESH, M. (2012). Chromatic Polynomials of Some Nanostars. Iranian Journal of Mathematical Chemistry, 3(2), 127-135. doi: 10.22052/ijmc.2012.5232
MLA
S. ALIKHANI; M. A. IRANMANESH. "Chromatic Polynomials of Some Nanostars", Iranian Journal of Mathematical Chemistry, 3, 2, 2012, 127-135. doi: 10.22052/ijmc.2012.5232
HARVARD
ALIKHANI, S., IRANMANESH, M. (2012). 'Chromatic Polynomials of Some Nanostars', Iranian Journal of Mathematical Chemistry, 3(2), pp. 127-135. doi: 10.22052/ijmc.2012.5232
VANCOUVER
ALIKHANI, S., IRANMANESH, M. Chromatic Polynomials of Some Nanostars. Iranian Journal of Mathematical Chemistry, 2012; 3(2): 127-135. doi: 10.22052/ijmc.2012.5232