On the Tutte polynomial of benzenoid chains

G. H. Fath-Tabar ${ }^{\bullet}$, Z. Gholam-Rezaei and A. R. Ashrafi
Department of Mathematics, Statistics and Computer Science, University of Kashan, Kashan 87317-51167, I. R. Iran

(Received January 9, 2012)

Abstract

The Tutte polynomial of a graph $\mathrm{G}, \mathrm{T}(\mathrm{G}, \mathrm{x}, \mathrm{y})$ is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

Keywords: Benzenoid chain, Tutte polynomial, graph.

1. Introduction

Benzenoid graphs or graph representations of benzenoid hydrocarbons are defined as finite connected plane graphs with no cut-vertices, in which all interior regions are mutually congruent regular hexagons. More details on this important class of molecular graphs can be found in the book of Gutman and Cyvin [1], and in the references cited therein.

Suppose G is an undirected graph, $E=E(G)$ and v is a vertex of G. The vertex v is reachable from another vertex u if there is a path in G connecting u and v. In this case we write $v \alpha u$. A single vertex is a path of length zero and so α is reflexive. Moreover, we can easily prove that α is symmetric and transitive. So α is an equivalence relation on $V(G)$. The equivalence classes of α is called the connected components of G. The Tutte polynomial of a graph G is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected [2-4]. To define we need some notions. The edge contraction G / uv of the graph G is the graph obtained by merging the vertices u and v and removing the edge $u v$. We write $G-u v$ for the graph where the edge $u v$ is merely removed. Then the Tutte polynomial of G is defined by the recurrence relation $\mathrm{T}[G ; x, y)=\mathrm{T}(G-e ; x, y)+\mathrm{T}(G / \mathrm{e} ; x, y)$ if e is neither a loop nor a bridge with base case $\mathrm{T}(G ; x, y)=x^{i} y^{j}$ if G contains i bridges and j loops and no other edges. In particular,
${ }^{\bullet}$ Corresponding author (fathtabar@kashanu.ac.ir)
$\mathrm{T}(G ; x, y)=1$ if G contains no edges. The importance of the Tutte polynomial $T(\mathrm{G}, \mathrm{x}, \mathrm{y})$ comes from the algebraic graph theory as a generalization of counting problems related to graph coloring and nowhere-zero flow. It is also the source of several central computational problems in theoretical computer science.

In this paper, the Tutte polynomial of a benzenoid chain $\mathrm{BC}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{r}}\right)$ is computed. This graph is constructed from r linear chains of length $x_{1}, x_{2}, \ldots, x_{r}$, respectively. Suppose $\mathrm{BC}(\mathrm{h})$ denotes the set of all benzenoid chains with h hexagons.

In Figures 1 and 2, the molecular graph of a linear chain $\mathrm{LC}(\mathrm{h})$ and $\mathrm{BC}(2,3,2,2,4,2,3,2,2)$ is depicted.

Figure 2. The Molecular Graph of a Benzenoid Chain BC(2,3,2,2,4,2,3,2,2).

Throughout this article our notation is standard and taken mainly from the standard book of graph theory.

2. Main Results

In this section the Tutte polynomial of a benzenoid chain $G(h)$ is computed. We first notice that, one can define the Tutte polynomial of a graph G as folice thlows:

$$
T(G ; x, y)=\Sigma_{A \subseteq E(G)}(x-1)^{\mathrm{c}(A)-\mathrm{c}(\mathrm{E})}(y-1)^{\mathrm{c}(A)+|A|-|V|} .
$$

Here, $\mathrm{c}(A)$ denotes the number of connected components of the graph (V, A).
Theorem 1. $\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) ; \mathrm{x}, \mathrm{y}\right)=\mathrm{T}\left(\operatorname{LBC}\left(\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{n}}-\mathrm{n}+1\right) ; \mathrm{x}, \mathrm{y}\right)$.
Proof. We proceed by induction on n to prove

$$
\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) ; \mathrm{x}, \mathrm{y}\right)=\mathrm{T}\left(\operatorname{LBC}\left(\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{n}}-\mathrm{n}+1\right) ; \mathrm{x}, \mathrm{y}\right),
$$

and

$$
\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right)=\mathrm{T}\left(\operatorname{LBC}\left(\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{n}}-\mathrm{n}+1\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right) .
$$

Clearly the result is valid for $\mathrm{n}=1$. Suppose the validity of result for $\mathrm{n}=\mathrm{k}$ and prove it for $\mathrm{n}=\mathrm{k}+1$. Our main proof consider two cases that $\mathrm{x}_{\mathrm{k}+1}=2$ or $\mathrm{x}_{\mathrm{k}+1}>2$. If $\mathrm{x}_{\mathrm{k}+1}=$ 2 then

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, 2\right) ; \mathrm{x}, \mathrm{y}\right) & =\mathrm{x}^{4} \mathrm{~T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right) ; \mathrm{x}, \mathrm{y}\right)+\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right) \\
& =(\mathrm{x} 4+\mathrm{x} 3+\mathrm{x} 2+\mathrm{x}+1) \mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right) ; \mathrm{x}, \mathrm{y}\right) \\
& +\mathrm{y} T\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}}-1\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right) \\
& =\mathrm{T}\left(\operatorname{LBC}\left(\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{k}}-\mathrm{k}+2\right) ; \mathrm{x}, \mathrm{y}\right),
\end{aligned}
$$

as desired. On the other hand, by a similar method one can prove that

$$
\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, 2\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right)=\mathrm{T}\left(\mathrm{LBC}\left(\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{k}}-\mathrm{k}+2\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right) .
$$

We now assume that $\mathrm{m}=\mathrm{x}_{\mathrm{k}+1}>2$ and the result is valid for m . We have:

$$
\begin{aligned}
\mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{~m}+1\right) ; \mathrm{x}, \mathrm{y}\right) & =\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right) \mathrm{T}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{~m}\right) ; \mathrm{x}, \mathrm{y}\right) \\
& +\mathrm{yT}\left(\mathrm{BC}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{~m}\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right) \\
& =\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right) \mathrm{T}\left(\mathrm{LBC}\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\ldots+\mathrm{x}_{\mathrm{k}}+\mathrm{m}-\mathrm{k}\right) ; \mathrm{x}, \mathrm{y}\right) \\
& +y \mathrm{yT}\left(\mathrm{LBC}\left(\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{k}}+m-\mathrm{k}\right) \sim \mathrm{C}_{5} ; \mathrm{x}, \mathrm{y}\right),
\end{aligned}
$$

which completes our proof.

Before stating the main result of this paper we notice that if $h=1,2$ then

$$
\begin{aligned}
& T(G(0), x, y)=x, \text { where } G(0) \text { is an edge, } \\
& T(G(1), x, y)=x^{5}+x^{4}+x^{3}+x^{2}+x+y .
\end{aligned}
$$

Theorem 2. Suppose $G=G\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is an arbitrary benzenoid chain in $B C(h)$, where h $=x_{1}+x_{2}+\ldots+x_{n}-n+1$. Then for $h>2$

$$
\begin{aligned}
T(G, x, y) & =\left(\frac{x(J+\sqrt{\Delta})+2(1-x) y}{2 \sqrt{\Delta}}\right)\left(\frac{J+\sqrt{\Delta}}{2}\right)^{n} \\
& +\left(\frac{x(-J+\sqrt{\Delta})-2(1-x) y)}{2 \sqrt{\Delta}}\right)\left(\frac{J-\sqrt{\Delta}}{2}\right)^{n}
\end{aligned}
$$

where

$$
\begin{aligned}
& J=x^{4}+x^{3}+x^{2}+x+1+y, \\
& \Delta=\left(x^{4}+x^{3}+x^{2}+x+1\right)^{2}+y^{2}+2 y\left(x^{4}+x^{3}+x^{2}+x+1\right)-4 \mathrm{x}^{4} y .
\end{aligned}
$$

Proof. By Theorem 1, it is enough to consider the case when $G=\mathrm{G}(\mathrm{h})$ is a linear benzenoid chain with exactly h hexagons. Define $S(h)=T(G(h), x, y)$. Consider the following five graphs:

- The Graph $G_{1}(h)$ constructed from G by replacing the end hexagon of G by a triangle, Figure 3(ii);
- The Graph $G_{2}(h)$ constructed from G by replacing the end hexagon of G by a quadrangle, Figure 3(iii);
- The Graph $\mathrm{G}_{3}(\mathrm{~h})$ constructed from G by replacing the end hexagon of G by a pentagon, Figure 3(iv);
- The Graph $\mathrm{G}_{4}(\mathrm{~h})$ constructed from G by replacing the end hexagon of G by an edge, Figure 3(v);
- The Graph $G_{5}(\mathrm{~h})$ constructed from $\mathrm{G}_{1}(\mathrm{~h})$ by adding a loop to the middle vertex of the pentagon, Figure 3(vi).
To compute the Tutte polynomial of G, we proceed by induction on h and obtain a recurrence relation for $S(h)$. We first notice that $S(l)=\mathrm{x}^{5}+\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+\mathrm{y}$. Define $\mathrm{S}_{\mathrm{i}}(\mathrm{h})=\mathrm{T}\left(\mathrm{G}_{\mathrm{i}}(\mathrm{h}-1), \mathrm{x}, \mathrm{y}\right), 1 \leq \mathrm{i} \leq 5$. By deleting an edge from the end hexagon of G with vertices of degree 2 and applying Theorem 1, we can see that

$$
\begin{aligned}
S(h) & =x^{4} S(h-1)+S_{1}(h-1)=x^{4} S(h-1)+x^{3} S(h-1)+S_{2}(h-1) \\
& =x^{4} S(h-1)+x^{3} S(h-1)+x^{2} S(h-1)+S_{3}(h-1) \\
& =x^{4} S(h-1)+x^{3} S(h-1)+x^{2} S(h-1)+x S(h-1)+S_{4}(h-1) \\
& =x^{4} S(h-1)+x^{3} S(h-1)+x^{2} S(h-1)+x S(h-1)+S(h-1)+S_{5}(h-2) \\
& =\left(x^{4}+x^{3}+x^{2}+x+1\right) S(h-1)+S_{5}(h-2) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
S(h)=\left(x^{4}+x^{3}+x^{2}+x+1\right) S(h-1)+S_{5}(h-2) \tag{1}
\end{equation*}
$$

We now calculate $S_{5}(\mathrm{~h}-2)$. To do this, we notice that $S_{5}(\mathrm{~h}-2)$ has a loop. Thus

$$
\begin{equation*}
S_{5}(\mathrm{~h}-2)=\mathrm{yS} \mathrm{~S}_{1}(\mathrm{~h}-2) \tag{2}
\end{equation*}
$$

To compute $\mathrm{S}_{1}(\mathrm{~h}-2)$ we put $\mathrm{h}-1$ in $\mathrm{S}(\mathrm{h})=\mathrm{x}^{4} \mathrm{~S}(\mathrm{~h}-1)+\mathrm{S}_{1}(\mathrm{~h}-1)$. Thus $\mathrm{S}(\mathrm{h}-1)=$ $x^{4} S(h-2)+S_{1}(h-2)$. Therefore $S_{1}(h-2)=S(h-1)-x^{4} S(h-2)$. Apply Eqs. (1) and (2), we have:

$$
\begin{equation*}
S(h)=\left(x^{4}+x^{3}+x^{2}+x+1\right) S(h-1)+y S_{1}(h-2) . \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
S(h) & =\left(x^{4}+x^{3}+x^{2}+x+1\right) S(h-1)+y\left(S(h-1)-x^{4} S(h-2)\right) \\
& =\left(x^{4}+x^{3}+x^{2}+x+1+y\right) S(h-1)-x^{4} y S(h-2) .
\end{aligned}
$$

This implies that $T(G(h), x, y)=\left(y+\frac{x^{5}-1}{x-1}\right) T(G(h-1), x, y)-x^{4} y T(G(h-2), x, y)$. There are several methods in discrete mathematics to solve such a recurrence equation. By applying one of these methods, we have

$$
\begin{aligned}
T(G, x, y) & =\left(\frac{x(J+\sqrt{\Delta})+2(1-x) y}{2 \sqrt{\Delta}}\right)\left(\frac{J+\sqrt{\Delta}}{2}\right)^{n} \\
& +\left(\frac{x(-J+\sqrt{\Delta})-2(1-x) y)}{2 \sqrt{\Delta}}\right)\left(\frac{J-\sqrt{\Delta}}{2}\right)^{n}
\end{aligned}
$$

where

$$
\begin{aligned}
& J=x^{4}+x^{3}+x^{2}+x+1+y, \\
& \Delta=\left(x^{4}+x^{3}+x^{2}+x+1\right)^{2}+y^{2}+2 \mathrm{y}\left(x^{4}+x^{3}+x^{2}+x+1\right)-4 \mathrm{x}^{4} y,
\end{aligned}
$$

which completes our proof.
(his

Figure 3. A Graph $G(h)$ and Five Types of Graphs Constructed from $G(h)$.

References

1. I. Gutman and S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer-Verlag, Berlin, 1989.
2. B. Bollobás, Modern Graph Theory, Berlin, New York: Springer-Verlag, 1998.
3. H. H. Crapo, The Tutte polynomial Aequationes Math. 3, 211-229 (1969).
4. G. E. Farr, Tutte-Whitney polynomials: some history and generalizations, in Grimmett, G. R.; McDiarmid, C. J. H., Combinatorics, Complexity and Chance: A Tribute to Dominic Welsh, Oxford University Press, 2007, pp. 28-52.
5. I. Gutman and S. J. Cyvin, The number of Kekulé structures in long benzenoid chains, Chem. Phys. Letters 147, 121-161 (1988).
6. I. Gutman, J. W. Kennedy and L. V. Quintas, Wiener numbers of random benzenoid chains, Chem. Phys. Letters 173, 403-408 (1990).
7. I. Gutman and S. Klavžar, A method for calculating Wiener numbers of benzenoid. hydrocarbons and phenylenes, Models Chem. 133, 389-399 (1996).
8. I. Gutman and A. R. Ashrafi, On the PI Index of Phenylenes and their Hexagonal Squeezes, MATCH Commun. Math. Comput. Chem., 60, 135-142 (2008).
9. I. Gutman and S. Radenković, Estrada index of benzenoid hydrocarbons, Z. Naturforschung 62a, 254-258 (2007).
10. A. T. Balaban, B. Furtula, I. Gutman and R. Kovačević, Partitioning of $1 / 4$-electrons in rings of aza-derivatives of polycyclic benzenoid hydrocarbons, Polycyclic Aromatic Compounds 27, 51-63 (2007).
11. G. Brinkmann, C. Grothaus and I. Gutman, Fusenes and benzenoids with perfect matchings, J. Math. Chem. 42, 909-924 (2007).
12. I. Gutman, S. Gojak, N. Turković and B. Furtula, Polansky's benzenoid character and the electron content of rings of benzenoid hydrocarbons, MATCH Commun. Math. Comput. Chem. 53, 139-145 (2005).
13. I. Gutman, S. Klavžar, M. Petkovšek and P. Žigert, On Hosoya polynomials of benzenoid graphs, MATCH Commun. Math. Comput. Chem. 43, 49-66 (2001).
14. G. H. Fath-Tabar and A. R. Ashrafi, Tutte polynomial of the Stoddart's poly(Ammonium) dendrimer, Optoelectron. Adv. Mater - Rapid Comm. 5, 96-98 (2011).
15. H. Yousefi-Azari, J. Yazdani, A. Bahrami and A.R. Ashrafi, Computing PI and Szeged Indices of Multiple Phenylenes and Cyclic Hexagonal-Square Chain Consisting Mutually Isomorphic Hexagonal Chains, J. Serb. Chem. Soc., 72, 10631067 (2007).
16. A. R. Ashrafi and A. Loghmam, PI Index of some Benzenoid Graphs, J. Chilean Chem. Soc., 51, 968-970 (2006).
17. B. Manoochehrian, H. Yousefi-Azari and A.R. Ashrafi, PI Polynomial of some Benzenoid Graphs, MATCH Commun. Math. Comput. Chem., 57, 653-664 (2007).
18. H. Yousefi-Azari, B. Manoochehrian and A. R. Ashrafi, PI and Szeged Indices of some Benzenoid Graphs Related to Nanostructures, Ars Combinatoria 84, 255-267 (2007).
19. H. Yousefi-Azari, A. R. Ashrafi and N. Sedigh, On the Szeged index of some benzenoid graphs applicable in nanostructures, Ars Combinatoria 90, 55-64 (2009).
