Let e be an edge of a G connecting the vertices u and v. Define two sets N1 (e | G) and N2(e |G) as N1(e | G)= {xV(G) d(x,u) d(x,v)} and N2(e | G)= {xV(G) d(x,v) d(x,u) }.The number of elements of N1(e | G) and N2(e | G) are denoted by n1(e | G) and n2(e | G) , respectively. The Szeged index of the graph G is defined as Sz(G) ( ) ( ) 1 2 n e G n e G e E . In this paper we compute the Szeged index of a 4,4 ׳-Bipyridinium dendrimer.
ARJOMANFAR, A., & GHOLAMI, N. (2012). Computing the Szeged Index of 4,4 ׳-Bipyridinium Dendrimer. Iranian Journal of Mathematical Chemistry, 3(1), 67-72. doi: 10.22052/ijmc.2012.5219
MLA
A. ARJOMANFAR; N. GHOLAMI. "Computing the Szeged Index of 4,4 ׳-Bipyridinium Dendrimer", Iranian Journal of Mathematical Chemistry, 3, 1, 2012, 67-72. doi: 10.22052/ijmc.2012.5219
HARVARD
ARJOMANFAR, A., GHOLAMI, N. (2012). 'Computing the Szeged Index of 4,4 ׳-Bipyridinium Dendrimer', Iranian Journal of Mathematical Chemistry, 3(1), pp. 67-72. doi: 10.22052/ijmc.2012.5219
VANCOUVER
ARJOMANFAR, A., GHOLAMI, N. Computing the Szeged Index of 4,4 ׳-Bipyridinium Dendrimer. Iranian Journal of Mathematical Chemistry, 2012; 3(1): 67-72. doi: 10.22052/ijmc.2012.5219