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ABSTRACT 

The concept of geometric-arithmetic indices was introduced in the chemical graph theory. 
These indices are defined by the following general formula: 
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where uQ  is some quantity that in a unique manner can be associated with the vertex u of 

graph G. In this paper the exact formula for two types of geometric-arithmetic index of V-
phenylenic nanotube are given. 
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1. INTRODUCTION 

Throughout this section G is a simple connected graph with vertex and edge sets V(G) and 
E(G), respectively. A topological index is a numeric quantity from the structure of a graph 
which is invariant under automorphisms of the graph under consideration.  

A topological index is a numeric quantity from the structural graph of a molecule. 
Usage of topological indices in chemistry began in 1947 when chemist Harold Wiener 
developed the most widely known topological descriptor, the Wiener index, and used it to 
determine physical properties of types of alkanes known as paraffin. The concept of 
geometric-arithmetic indices was introduced in the chemical graph theory. These indices 
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generally are defined as
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GGAGA , where uQ  is some 

quantity that in a unique manner can be associated with the vertex u of graph G. The first 
type of geometric-arithmetic index is denoted by GA1 and defined as 
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GGAGA , where uv is an edge of the molecular graph G and du stand for 

the degree of the vertex u, see [1].  
The second type of geometric-arithmetic index is denoted by GA2 and defined as 
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GGAGA , where nu is the number of vertices of G lying closer to u than 

to v and nv is the number of vertices of G lying closer to v than to u, see [2]. For )(GEuv , 

let um  is the number of edges of G lying closer to u than to v and vm  is the number of edges 

of G lying closer to v than to u. 
  The third member of the class of generalGA  by setting uQ  ( vQ ) to be the number um  (

vm ) for the edge uv of the graph G is defined as   
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introduced in the paper [3]. A V-phenylenic net is a trivalent decoration made by alternating 
squares C4 and hexagons C6  and octagons C8. In recent years, some researchers are 
interested to topological indices of V-phenylenic nanotube see [4] for details.  

Throughout this paper VU= VU [p, q] denotes an arbitrary V-phenylenic nanotube in 
terms of the number of hexagons in a fixed row (p) and  the number of hexagons in a fixed 
column (q), Figure 1. 

 

 

 
Figure 1.  V-phenylenic Nanotube, with p=4 and q=3. 
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2 MAIN RESULTS 

In this section, 2GA  index of the molecular graph of V-phenylenic nanotube is computed. It 

is easy to see that 
pqqpVUVVUV 6|]),[(||)(|    and   ppqqpVUEVUE  9|]),[(||)(| . 

In the following theorem the 2GA  index of V-phenylenic nanotube is obtained. 

 
Theorem 1. The 2GA  index of VU=VU [p, q] is computed as follows: 
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Proof. One can see that there are three separate types of edges of V-phenylenic nanotube 
and the number of edges is different. Suppose e1, e2 and e3 are representative edges for 
these types. 
 

e1

 

 
Figure 2. The Set E1(VU) ( The Edges of Type e1). 

 
We partition the edges of V-phenylenic nanotube into three subsets )(1 VUE , 

)(2 VUE and )(3 VUE , as follows: 

E1(VU) = { e| e is the type of e1}, 
                          E2(VU) = { e| e is  the type of e2,k  for qk 21  }, 

 E3(VU) = { e| e is  the type of e3}. 
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The sets )(1 VUE , )(2 VUE and )(3 VUE are shown by dashed lines in Figures 2, 3 and 4, 

respectively. 
e2,1

e2,2

 

Figure 3. The Set E2(VU) ( The Edges of Type e2). 

e3

e3

 

Figure 4. The Set E3(VU) ( The Edges of Type e3). 

Therefore, by definition of GA2 index, 
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We evaluate each summation separately. For evaluating the first sum, we know that 

for )(1 VUEuve  , if p is even we have 
2

|)(| VUV
nn vu  , if p is odd 

2
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  Also pqVUE 2|)(| 1  , then 
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For each )(2 VUEuve  , we have pqnn vu 4 .  Suppose i is an odd positive integer, such 

that qi 1  ,if p is even, we have 

 

 

 

 

Suppose i is an even positive integer, such that qi 1  , if p is odd, we have 
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Suppose i is an even positive integer, such that qi 1  
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For all case, if p is odd, we have 
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Finally for computing the third sum, we attend, for 

each )(3 VUEuve   in i-th row, nu=3pi  and nv= 6pq-3pi and the number of edges of third 

type in each row is 2p. Since Vphenylenic nanotube is bipartite then for each )(3 VUEuve 

, we have |)(| VUVnn vu  . Then 
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Theorem 2. The 3GA  index of  VU=VU [p, q] is given by: 
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where the elements of  )(2 VUE are shown in Figure 4.  

 

Proof. The sets of )(1 VUE , )(2 VUE and )(3 VUE , are defined in the same way as is the 

previous theorem. Therefore, by definition of GA3 index, 
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For each )(1 VUEuve  , if p is even, we have: 
2
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  and if p is odd, we 

have:
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. We can partition E2 (VU) into 2q 

subsets such as E2,1,  E2,2, …, E2,2q,  such that E2,k= { e| e is the type of e2,k }, for qk 21  . 

Therefore  
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Suppose i is an odd positive integer and ip 2 , such that qi 1 , for each 

iEuve ,2 . By calculation, we  have the following results: 
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Suppose i is an even positive integer and  ip 2   , such that qi 1  , for each 

iEuve ,2 , 
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Suppose i is an odd positive integer and ip 2   , such that qi 1  , for each 

iEuve ,2 ,  
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and  
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