Study of fullerenes by their Algebraic Properties

Modjtaba Ghorbani* and Somaieh Heidari Rad
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

(Received December 10, 2011)

Abstract

The eigenvalues of a graph is the root of its characteristic polynomial. A fullerene F is a 3connected graphs with entirely 12 pentagonal faces and $n / 2-10$ hexagonal faces, where n is the number of vertices of F. In this paper we investigate the eigenvalues of a class of fullerene graphs.

Keywords: Molecular graph, Adjacency matrix, Eigenvalue, Fullerene.

1. Introduction

All graphs considered in this paper are simple and connected. The vertex and edge sets of a graph G are denoted by $V(G)$ and $E(G)$, respectively. Let $G=(V, E)$ be a simple graph and $W \subseteq V$. Then the induced subgraph by W is the subgraph of G obtained by taking the vertices in W and joining those pairs of vertices in W which are joined in G. Denoted by G $-\left\{v_{1}, \ldots, v_{k}\right\}$ means a graph obtained by removing the vertices v_{1}, \ldots, v_{k} from G and all edges incident to any of them.

The adjacency matrix $A(G)$ of graph G with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is the $n \times n$ symmetric matrix $\left[a_{i j}\right]$, such that $a_{i j}=1$ if v_{i} and v_{j} are adjacent and 0 , otherwise. The characteristic polynomial $\Phi(G, x)$ of graph G was defined as

$$
\Phi(G, x)=\operatorname{det}(A(G)-x I) .
$$

The roots of the characteristic polynomial are named the eigenvalues of graph G and form the spectrum of this graph. If α be an eigenvalue of matrix A, then there exist a vector such as V, in which $A . V=\alpha V$.

[^0]Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of $A(G)$, then the energy of G, denoted by $E(G)$, is defined [1, 2] as

$$
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| .
$$

In theoretical chemistry, the energy is a graph parameter stemming from the Hückel molecular orbital approximation for the total π-electron energy. So the graph energy has some specific chemical interests and has been extensively studied [3].

The fullerene era was started in 1985 with the discovery of a stable C_{60} cluster and its interpretation as a cage structure with the familiar shape of a soccer ball, by Kroto and his co-authors [4]. The well-known fullerene, the C_{60} molecule, is a closed-cage carbon molecule with three-coordinate carbon atoms tiling the spherical or nearly spherical surface with a truncated icosahedral structure formed by 20 hexagonal and 12 pentagonal rings, [5]. Let p, h, n and m be the number of pentagons, hexagons, carbon atoms and bonds between them, in a given fullerene F. Since each atom lies in exactly 3 faces and each edge lies in 2 faces, the number of atoms is $n=(5 p+6 h) / 3$, the number of edges is $\mathrm{m}=(5 p+6 h) / 2=3 / 2 n$ and the number of faces is $f=p+h$. By the Euler's formula $n-m+f=2$, one can deduce that $(5 p+6 h) / 3-(5 p+6 h) / 2+p+h=2$, and therefore $p=12, v=2 h+20$ and $e=3 h+30$. This implies that such molecules made up entirely of n carbon atoms and having 12 pentagonal and $(n / 2-10)$ hexagonal faces, where $n \neq 22$ is a natural number equal or greater than 20 . The goal of this paper is to compute some new results of fullerene graphs.

2. Main Results

A circulant matrix is a matrix where each row vector is rotated one element to the right relative to the preceding row vector. In other words, a circulant matrix [6] is specified by one vector c which appears as the first column of C. The remaining columns of C are each cyclic permutations of the vector c with offset equal to the column index. The last row of C is the vector c in reverse order, and the remaining rows are each cyclic permutations of the last row.

In general, an $n \times n$ circulant matrix C takes the following form:

$$
C=\left[\begin{array}{ccccc}
c_{0} & c_{n-1} & \cdots & c_{2} & c_{1} \\
c_{1} & c_{0} & c_{n-1} & \cdots & c_{2} \\
\vdots & c_{1} & c_{0} & \ddots & \vdots \\
c_{n-2} & \ddots & \ddots & \ddots & c_{n-1} \\
c_{n-1} & c_{n-2} & \cdots & c_{1} & c_{0}
\end{array}\right]
$$

The eigenvectors of a circulant matrix are given by

$$
v_{j}=\left(1, \omega_{j}, \omega_{j}^{2}, \ldots, \omega_{j}^{n-1}\right)^{T}, j=0,1, \ldots, n-1,
$$

where, $\omega_{j}=e^{\frac{2 k \pi}{n} i}$ are the n-th roots of unity and $i^{2}=1$. The corresponding eigenvalues are then given by

$$
\lambda_{j}=c_{0}+c_{n-1} \omega_{j}+c_{n-2} \omega_{j}^{2}+\cdots+c_{1} \omega_{j}^{n-1}, j=0 \cdots n-1 .
$$

Let A and B be matrices of dimensions $n \times m$ and $n^{\prime} \times m^{\prime}$, respectively. Then their tensor product is a $n n^{\prime} \times m m^{\prime}$ matrix with block forms

$$
A \otimes B=\left[a_{i j} B\right] .
$$

Theorem 1 ([7]). Let $A_{i j}, 1 \leq i, j \leq 1$ be square matrices of order n that have the complete set of eigenvectors $\left\{V_{1}, \ldots, V_{n}\right\}$ with $A_{i j} V_{k}=\alpha_{i j}^{k}$. Let also, $B_{k}=\left[\alpha_{i j}^{k}\right], 1 \leq k \leq n$ be square matrices of order l, each with a complete set of eigenvectors $\left\{U_{1}^{k}, \ldots, U_{l}^{k}\right\}$ satisfying $B_{k} U_{j}^{k}=\beta_{j}^{k} U_{j}^{k} \quad$ for $1 \leq j \leq 1$. Then a complete set of eigenvectors $\left\{W_{1}, W_{2}, \ldots, W_{n l}\right\}$ for the square matrix

$$
A=\left[\begin{array}{cccc}
A_{11} & A_{12} & \ldots & A_{1 l} \\
A_{21} & A_{22} & \ldots & A_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
A_{l 1} & A_{l 2} & \ldots & A_{l l}
\end{array}\right]
$$

is given by $W_{(k-1) l+j}=U_{j}^{k} \otimes V_{k}$ for $k=1,2, \ldots, n$ and $j=1,2, \ldots, l$. The corresponding eigenvalues are $\lambda_{(k-1) l+j}=\beta_{j}^{k}$.

We will apply this Theorem to the case where all blocks in the adjacency matrix are ciculant matrices. An l - level circulant is one whose adjacency matrix has an $l \times l$ block form A, all $A_{i j}$ being circulant. For example, a 2 - level circulant,

$$
G=C_{n}\left(\left\{n_{i}^{1}\right\},\left\{n_{i}^{2}\right\},\left\{m_{i}^{12}\right\}\right),
$$

would consist of two vertex sets $S_{1}=\left\{v_{1}, \ldots, v_{n}\right\}$ and $S_{2}=\left\{w_{1}, \ldots, w_{n}\right\}$ such that
(a) G induces circulants $C_{n}\left(\left\{n_{i}^{1}\right\}\right)$ and $C_{n}\left(\left\{n_{i}^{2}\right\}\right)$ on S_{1} and S_{2}, respectively.
(b) Edges between the two circulants are of the form $v_{i} w_{k}$, where

$$
k=j+m_{i}^{12}(\bmod n)
$$

for some i.
In this paper by using Theorem 1, we compute the energy of some fullerenes. Consider an infinite class of fullerene with $10 n$ vertices, as depicted in Figure 1.

Figure 1. The Schlegel Diagram of $C_{10 n}$.
The first member of this class of fullerenes is C_{20} and the second member of these class has exactly 30 vertices see Figure 2. In [7], Lee and his co - authors computed its eigenvalues. Here we compute the eigenvalues of this class of fullerenes for $n=3,6$ and in continuing we introduce the general form of its adjacency matrix by means of block matrix.
Let $\quad \alpha=1.309-0.9511 i, \bar{\alpha}=1.309+0.9511 i, \beta=0.191-0.5878 i, \bar{\beta}=0.191+0.5878 i$, $x=0.618 x=0.618$ and $y=-1.618$. According to Lee et al. Theorem, one can see that the block form of adjacency matrix of C_{30} is as follows:

Figure 2. The Schlegel diagram of C_{30}.

$$
A\left(C_{30}\right)=\left[\begin{array}{cccccc}
A\left(C_{5}\right) & I & 0 & 0 & 0 & 0 \\
I & 0 & M^{t} & 0 & 0 & 0 \\
0 & M & 0 & 0 & 0 & I \\
0 & 0 & 0 & A\left(C_{5}\right) & I & 0 \\
0 & 0 & 0 & I & 0 & M^{t} \\
0 & 0 & I & 0 & M & 0
\end{array}\right]
$$

So the matrices $B_{i}, i=1,2,3,4$ in Theorem 1 are as follows:

$$
\begin{gathered}
B_{1}=\left[\begin{array}{llllll}
x & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & \bar{\alpha} & 0 & 0 & 0 \\
0 & \alpha & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & x & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & \bar{\alpha} \\
0 & 0 & 1 & 0 & \alpha & 0
\end{array}\right], B_{2}=\left[\begin{array}{llllll}
y & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & \bar{\beta} & 0 & 0 & 0 \\
0 & \beta & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & y & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & \bar{\beta} \\
0 & 0 & 1 & 0 & \beta & 0
\end{array}\right], B_{3}=\left[\begin{array}{lllllll}
y & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & \beta & 0 & 0 & 0 \\
0 & \bar{\beta} & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & y & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & \beta \\
0 & 0 & 1 & 0 & \bar{\beta} & 0
\end{array}\right], \\
B_{4}=\left[\begin{array}{lllllll}
x & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & \alpha & 0 & 0 & 0 \\
0 & \bar{\alpha} & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & x & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & \alpha \\
0 & 0 & 1 & 0 & \bar{\alpha} & 0
\end{array}\right], B_{5}=\left[\begin{array}{llllll}
2 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 2 & 0
\end{array}\right] .
\end{gathered}
$$

The eigenvalues of B_{1} are $-2.3214,-1.5118,0.1487,0.7180,1.7908$ and 2.1418, repectively. These values for B_{2} are $-2.1631,-2.1189,-1.1218,0.1316,0.6668$ and 1.3693 , 1.3693 , respectively. The eigenvalues of B_{3} are $-2.1631,-2.1189,-1.1218,0.1316,0.6668$ and, respectively. These values for B_{4} are $-2.3214,-1.5118,0.1487,0.7180,1.7908$ and 2.1418, respectively. Finally one can see that the eigenvalues of B_{5} are $-2.6458,-1.7321,1,1.7321,2.6458$ and 3, , respectively. By using Theorem 1, the spectrum of C_{30} is as follows:

Eigenvalues	Multiplicity	Eigenvalues	Multiplicity
0.6668	2	-2.6458	1
0.7180	2	-2.3214	2
1	1	-2.1631	2
1.3693	2	-2.1189	2
1.7321	1	-1.7321	1
1.7908	2	-1.5118	2
2.4118	2	-1.1218	2
2.6458	1	0.1316	2
3	1	0.1478	2

This implies the energy of this graph is 45.7038 . Consider now the fullerene graph C_{60}, depicted in figure 3. The block form of its adjacency matrix is as follows:
$A\left(C_{60}\right)=\left[\begin{array}{ll}W & V^{t} \\ V & W\end{array}\right]$, where

$$
W=\left[\begin{array}{cccccc}
A\left(C_{5}\right) & I & 0 & 0 & 0 & 0 \\
I & 0 & M^{t} & 0 & 0 & 0 \\
0 & M & 0 & I & 0 & 0 \\
0 & 0 & I & 0 & M^{t} & 0 \\
0 & 0 & 0 & M & 0 & I \\
0 & 0 & 0 & 0 & I & 0
\end{array}\right] \text { and } V=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & M
\end{array}\right] .
$$

So, B_{1}, \ldots, B_{5} and their eigenvalues are as follows:

Figure 3. The Schlegel Diagram of C_{60}.

$$
\begin{aligned}
& B_{1}=\left[\begin{array}{llllllllllll}
x & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & \bar{\alpha} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \alpha & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \alpha & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha \\
0 & 0 & 0 & 0 & 0 & 0 & x & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \bar{\alpha} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \bar{\alpha} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right], \text { Eigenvalues }\left(B_{1}\right)=\left[\begin{array}{l}
-2.5384 \\
-2.3055 \\
-1.9369 \\
-1.4637 \\
-0.9453 \\
0.3 \\
0.4425 \\
1.1082 \\
1.6180 \\
2.0439 \\
2.3600 \\
2.5532
\end{array}\right. \\
& B_{2}=\left[\begin{array}{llllllllllll}
y & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & \bar{\beta} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \beta & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \bar{\beta} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \beta & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\beta} \\
0 & 0 & 0 & 0 & 0 & 0 & y & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \bar{\beta} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \bar{\beta} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \beta & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \beta & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \text {, Eigenvalues of } B 2=\left\{\begin{array}{l}
-2.1427 \\
-2.1424 \\
-1.5330 \\
-1.3055 \\
-0.9828 \\
-0.6180 \\
0.2410 \\
0.3763 \\
0.7879 \\
1.1287 \\
1.3935 \\
1.5609
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& B_{3}=\left[\begin{array}{llllllllllll}
y & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & \beta & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \bar{\beta} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \beta & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{\beta} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \beta \\
0 & 0 & 0 & 0 & 0 & 0 & y & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \beta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\beta} & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \beta & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\beta} & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \bar{\beta} & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \text {, Eigenvalues of } B 3=\left\{\begin{array}{l}
-2.1427 \\
-2.1424 \\
-1.5330 \\
-1.3055 \\
-0.9828 \\
-0.6180 \\
0.2410 \\
0.3763 \\
0.7879 \\
1.1287 \\
1.3935 \\
1.5609
\end{array}\right\} \\
& B_{4}=\left[\begin{array}{llllllllllll}
x & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \bar{\alpha} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{\alpha} & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha \\
0 & 0 & 0 & 0 & 0 & 0 & x & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \alpha & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\alpha} & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \alpha & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \bar{\alpha} & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & \bar{\alpha} & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] \text {, Eigenvalues of } B 4=\left\{\begin{array}{l}
-2.5384 \\
-2.3055 \\
-1.9369 \\
-1.4637 \\
-0.9453 \\
0.3 \\
0.4425 \\
1.1082 \\
1.6180 \\
2.0439 \\
2.3600 \\
2.5532
\end{array}\right\}
\end{aligned}
$$

$B_{5}=\left[\begin{array}{llllllllllll}2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right]$, Eigenvalues of $B 5=\left\{\begin{array}{l}-2.9093 \\ -2.6458 \\ -2.2361 \\ -1.7321 \\ -1.2393 \\ 1 \\ 1.2393 \\ 1.7321 \\ 2.2361 \\ 2.6458 \\ 2.9093 \\ 3\end{array}\right\}$.
So its spectrum is as follows:

Eigenvalue \mathbf{s}	Multiplicit \mathbf{y}	Eigenvalue \mathbf{s}	Multiplicit \mathbf{y}
1.2393	1	-1.2393	1
1.3935	2	-0.9828	2
1.5609	2	-0.9453	2
1.6180	2	-0.6180	2
1.7321	1	0.2410	2
2.0439	2	0.3	2
0.3763	2	-2.1424	2
0.4425	2	-1.9369	2
0.7879	2	-1.7321	1
1	1	-1.5330	2
1.1082	2	-1.4637	2
1.1287	2	-1.3055	2
-2.9093	1	2.2361	1
-2.6458	1	2.3600	2
-2.5384	2	2.5532	2
-2.3055	2	2.6458	1
-2.2361	1	2.9093	1
-2.1427	2	3	1

So, its energy is 93.1814 . In general, one can see that the adjacency matrix of this class of fullerenes is as follows:
i) $\quad n$ is odd

$$
\left[\begin{array}{ccccccccccccccc}
A\left(C_{5}\right) & I & & & & & & & & & & & & & \\
I & 0 & M t & & & & & & & & & & & & \\
& M & 0 & I & & & & & & & & & & & \\
& & I & 0 & M t & & & & & & & & & \\
& & & M & 0 & \ddots & & & & & & & & & \\
& & & & \ddots & \ddots & M t & & & & & & & \\
& & & & & M & 0 & & & & & & & \\
& & & & & & A\left(C_{5}\right) & I & & & & & I \\
& & & & & & & I & 0 & M t & & & & \\
& & & & & & & & M & 0 & I & & & \\
& & & & & & & & & I & 0 & M t & & \\
& & & & & & & & & \\
& & & & & & & & & M & 0 & \ddots & \\
& & & & & & & & & & \ddots & \ddots & M t \\
& & & & & I & & & & & & M & 0
\end{array}\right],
$$

ii) n is even

and then according to Theorem 1 the block matrices $B_{1}, B_{2}, \ldots, B_{5}$ are $2 n \times 2 n$ as follows:
i) $\quad n$ is odd

$$
B_{3}=\left[\begin{array}{llllllllllllll}
y & 1 & & & & & & & & & & & & \\
1 & 0 & \beta & & & & & & & & & & & \\
& \bar{\beta} & 0 & 1 & & & & & & & & & & \\
& & 1 & 0 & \beta & & & & & & & & & \\
& & & \bar{\beta} & 0 & \ddots & & & & & & & & \\
& & & & \ddots & \ddots & \beta & & & & & & & \\
& & & & & \bar{\beta} & 0 & & & & & & & \\
& & & & & & & & & & & & & \\
& & & & & & & y_{1} & 1 & & & & & \\
& & & & & & & 1 & 0 & \beta & & & & \\
& & & & & & & & \bar{\beta} & 0 & 1 & & & \\
& & & & & & & & & 1 & 0 & \beta & & \\
& & & & & & & & & & \bar{\beta} & 0 & \ddots & \\
& & & & & & & & & & & \ddots & \ddots & \beta \\
& & & & & & & & & & & & \bar{\beta} & 0
\end{array}\right] \text {, }
$$

$$
B_{5}=\left[\begin{array}{llllllllllllll}
2 & 1 & & & & & & & & & & & & \\
1 & 0 & 2 & & & & & & & & & & & \\
& 2 & 0 & 1 & & & & & & & & & & \\
& & 1 & 0 & 2 & & & & & & & & & \\
& & & 2 & 0 & \ddots & & & & & & & & \\
& & & & \ddots & \ddots & 2 & & & & & & & \\
& & & & & 2 & 0 & & & & & & & \\
& & & & & & & 2 & 1 & & & & & \\
& & & & & & & 1 & 0 & 2 & & & & \\
& & & & & & & & 1 & \\
& & & & & & & & 2 & 0 & 1 & & & \\
& & & & & & & & & 1 & 0 & 2 & & \\
& & & & & & & & & & 2 & 0 & \ddots & \\
& & & & & & & & & & & \ddots & \ddots & 2 \\
& & & & & & & & & & & & & 2
\end{array}\right]
$$

ii) $\quad n$ is even

$$
B_{1}=\left[\begin{array}{cccccccccccccc}
x & 1 & & & & & & & & & & & & \\
1 & 0 & \bar{\alpha} & & & & & & & & & & & \\
\\
& \alpha & 0 & 1 & & & & & & & & & & \\
& & 1 & 0 & \bar{\alpha} & & & & & & & & & \\
\\
& & & \alpha & 0 & \ddots & & & & & & & & \\
\\
& & & & \ddots & \ddots & 1 & & & & & & & \\
& & & & & 1 & 0 & & & & & & & \\
& & & & & & & x & 1 & & & & & \\
& & & & & & & & & \\
& & & & & & & 1 & 0 & \bar{\alpha} & & & & \\
& & & & & & & & \alpha & 0 & 1 & & & \\
& & & & & & & & & 1 & 0 & \bar{\alpha} & & \\
& & & & & & & & & & \alpha & 0 & \ddots & \\
& & & & & & & & & & & \ddots & \ddots & 1 \\
& & & & & & & & & & & & \\
& & & & & & \alpha & & & & & & 1 & 0
\end{array}\right],
$$

$$
B_{5}=\left[\begin{array}{llllllllllllll}
2 & 1 & & & & & & & & & & & & \\
1 & 0 & 2 & & & & & & & & & & & \\
& 2 & 0 & 1 & & & & & & & & & & \\
& & 1 & 0 & 2 & & & & & & & & & \\
& & & 2 & 0 & \ddots & & & & & & & & \\
& & & & \ddots & \ddots & 1 & & & & & & & \\
& & & & & 1 & 0 & & & & & & & \\
& & & & & & & 2 & 1 & & & & & \\
& & & & & & & 1 & 0 & 2 & & & & \\
& & & & & & & & & \\
& & & & & & & & 2 & 0 & 1 & & & \\
& & & & & & & & & 1 & 0 & 2 & & \\
& & & & & & & & & & 2 & 0 & \ddots & \\
& & & & & & & & & & & \ddots & \ddots & 1 \\
& & & & & & 2 & & & & & & 1 & 0
\end{array}\right] .
$$

Since B_{1}, B_{4} and B_{2}, B_{3} are conjugated matrix, then $\operatorname{Spec}\left(B_{1}\right)=\operatorname{Spec}\left(B_{4}\right)$ and $\operatorname{Spec}\left(B_{2}\right)=\operatorname{Spec}\left(B_{3}\right)$. So, the energy of this class of fullerene can be obtained by the following:

$$
E\left(C_{10 n}\right)=2 E\left(B_{1}\right)+2 E\left(B_{2}\right)+E\left(B_{5}\right) .
$$

3. CONCLUSIONS

In this paper an efficient method is presented which is useful for computing energy of fullerenes. We applied our method on C_{30} and C_{60} fullerenes. It remains as an open problem what is the energy of $\mathrm{C}_{10 n}$ fullerenes in general case. We proposed a block matrix of order $2 n \times 2 n$ for adjacency matrix of $\mathrm{C}_{10 n}$. By this matrix we offer five matrices B_{1}, \ldots, B_{5} which they are the main blocks of adjacency matrix. So, to obtain eigenvalues of adjacency matrix of this fullerene it is enough to obtain the eigenvalues of $B_{i}, i=1,2,3,4,5$. Then by using Lee Theorem we can obtain the eigenvalues of $\mathrm{A}\left(\mathrm{C}_{10 n}\right)$ and then the energy of this class of fullerenes.

REFERENCES

1. I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 122.
2. I. Gutman, The Energy of a Graph: Old and New Results, Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001.
3. I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, 1986.
4. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C 60 : Buckminsterfullerene. Nature 318 (1985) 162-163.
5. H. W. Kroto, J. E. Fichier and D. E. Cox, The Fullerene, Pergamon Press, New York, 1993.
6. D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Applications (Pure and Applied Mathematics), Academic Press, 1997.
7. S. L. Lee, Y. L. Luo, B. E. Sagan and Y.-N. Yeh, Eigenvectors and eigenvalues of some special graphs, IV multilevel circulants. Int. J. Quant. Chem. 41 (1992) 105 - 116.

[^0]: ${ }^{\bullet}$ Corresponding author (e-mail: ghorbani30@gmail.com).

