Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as: ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , ) euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.
ASTANEH-ASL, A., & FATH-TABAR, G. (2011). Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs. Iranian Journal of Mathematical Chemistry, 2(2), 73-78. doi: 10.22052/ijmc.2011.5177
MLA
A. ASTANEH-ASL; GH. H. FATH-TABAR. "Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs", Iranian Journal of Mathematical Chemistry, 2, 2, 2011, 73-78. doi: 10.22052/ijmc.2011.5177
HARVARD
ASTANEH-ASL, A., FATH-TABAR, G. (2011). 'Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs', Iranian Journal of Mathematical Chemistry, 2(2), pp. 73-78. doi: 10.22052/ijmc.2011.5177
VANCOUVER
ASTANEH-ASL, A., FATH-TABAR, G. Computing the First and Third Zagreb Polynomials of Cartesian Product of Graphs. Iranian Journal of Mathematical Chemistry, 2011; 2(2): 73-78. doi: 10.22052/ijmc.2011.5177