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ABSTRACT 

A topological index of a molecular graph G is a numeric quantity related to G which is 
invariant under symmetry properties of G. In this paper we obtain the Randić, geometric-
arithmetic, first  and second Zagreb indices , first and second Zagreb coindices of tensor 
product of two graphs  and  then the Harary, Schultz and modified Schultz indices of tensor 
product of a graph G with complete graph of order n are obtained. 
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1. INTRODUCTION 

A topological index of a molecular graph G is a numeric quantity related to G which is 
invariant under symmetry properties of G.  The first and second Zagreb indices were 

originally defined as ∑= ∈ )(
2

1 )( GVa G aGM δ  and baGM GGEab G δδ∑= ∈ )(2 )( , 

respectively. The first Zagreb index can be also expressed as a sum over edges of G, 
][)( )(1 baGM GGEab G δδ∑ ∈ += , see [1, 2]. The first and second Zagreb coindices are 

defined as ][)( )(1 baGM GGEab G δδ∑ += ∉  
and baGM GGEab G δδ∑= ∉ )(2 )( , see [3]. In 

1975, the chemist Milan Randić proposed a topological index based on the degrees of the 
end vertices of an edge in studying the properties of alkane [4]. The Randić index of a 
graph G is defined as .)/1()( )(∑= ∈ GEab GG baGR δδ

 
The geometric−arithmetic index 

(GA) was conceived, ))(/()( 2
1

)( babaGGA GGGEab GG δδδδ∑= ∈ . Other topological indices 
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that will be used in this paper are the Schultz and modified Schultz indices and they are 
defined as follows: 

    
),()()(

)(},{
badbaGW GGVba GG∑ ⊆+ += δδ , 

),()(
)(},{* badbaGW GGVba GG∑ ⊆

= δδ , 

respectively, see [5, 6] for details. The Harary index H(G) is defined as 
)/1()( )(},{ baGH GGGVba δδ∑ ⊆=  [7]. For any two simple graphs G and H, the tensor 

product HG⊗  of G and H has vertex set )()()( HVGVHGV ×=⊗  and edge set 
|),)(,({)( dcbaHGE =⊗  )(GEac∈  and )}(HEbd ∈ . It is easy to prove that 

|)(||)(|2|)(| HEGEHGE =⊗  [8]. In [9], the vertex PI index was proposed and the Wiener 
and vertex PI indices of this graph operation were computed in [10]. In this paper we study 
on some topological indices of tensor product of graph. At the beginning the Randić, GA, 
first and second Zagreb indices and first and second Zagreb coindices are computed. For 
obtaining Zagreb coindices of tensor product of graphs, we need another graph operations 
that recall them in the next stage. 

The disjunction HG ∨  of two graphs G and H is the graph with vertex set 
)()( HVGV ×  in which ),( ba  is adjacent with ),( dc  whenever a is adjacent with c in G or b 

is adjacent with d in H.  
The symmetric difference HG⊕  of two graphs G and H is the graph with vertex 

set )()( HVGV ×  in which ),( ba  is adjacent with ),( dc  whenever a is adjacent with c in G 
or b is adjacent with d in H, but not both.  

For computing topological indices which related to distance in graphs, we use the 
useful and simple definitions and result in [11] for distance of vertices in tensor product of 
graphs. 

 
Definition 1.1. Let G be a graph. We define ),( yxdG′  for )(, GVyx ∈  as follows: 

i. If ),( yxdG  is odd then ),( yxdG′  is defined as the length of the shortest even walk 
joining x and y in G, and if there is no shortest even walk then ∞+=′ ),( yxdG . 

ii. If ),( yxdG  is even then ),( yxdG′  is defined as the length of the shortest odd walk  
joining x and y in G, and if there is no shortest odd walk then ∞+=′ ),( yxdG . 

iii. If ∞+=),( yxdG , then ∞+=′ ),( yxdG . 
 

Definition 1.2. Let G and H be two graphs and )(),(),,( HGVdcba ⊗∈ . The relation R on 
the vertices of HG⊗ is defined as follows: 
(a,b) R (c,d)  if and only if ∞+<),(),,( dbdcad HG  and ),(),( dbdcad HG +  is even. 
 
Theorem 1.3. Let G and H be graphs and )(),(),,( HGVdcba ⊗∈ . 
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i. If (a,b) R (c,d) , then .)},(),,({)),(),,(( dbdcadMaxdcbad HGHG =⊗  
ii. If (a,b) R/ (c,d)  then, 

)}},(),,({)},,(),,({{)),(),,(( dbdcadMaxdbdcadMaxMindcbad HGHGHG ′′=⊗ . 
 

We use the above definitions and Theorem for computing Schultz, modified Schultz 
and Harary indices of tensor product of complete graph Kn and a graph G.  
 

2. MAIN RESULTS 

In this section, the Zagreb indices and coindices are computed for tensor product of graphs.  
 
Theorem 2.1. Let G and H be graphs. The first and second Zagreb indices of tensor 
product of G and H are given by: 

),()()( 111 HMGMHGM =⊗  

   ).()(2)( 222 HMGMHGM =⊗  

Proof. By definition of Zagreb indices, 

).()(

)()(

)()(

)(

)),(()(

11

)(

2

)(

2

)( )(

22

2

)(),(

2

)(),(
1

HMGM

ba

ba

ba

baHGM

HVb
H

GVa
G

GVa HVb
HG

H
HGVba
G

HGVba
HG

=

=

=

=

=⊗

∑∑

∑ ∑

∑

∑

∈∈

∈ ∈

⊗∈

⊗∈
⊗

δδ

δδ

δδ

δ

 

Also, 

 
),()(2

2

)()(2

),(),()(

22

)()(

)(),(

)(),)(,(2

HMGM

dbca

dcba

dcbaHGM

HEbd HHGEac GG

HEbdGEac HGHG

HGEdcba HGHG

=

∑∑=

∑=

∑=⊗

∈∈

∈∈

⊗∈ ⊗⊗

δδδδ

δδδδ

δδ

 

which completes the proof.                                                                                                □  
 

Theorem 2.2. Let G and H be graphs. The first and second Zagreb coindices of tensor 
product of G and H are computed as follows:  

),()(
))()((|)(|2))()((|)(|2)(

11

11111
HGMHGM

GMGMHEHMHMGEHGM
∨+⊕+

+++=⊗
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).()(
))()()((2))()(()(2)(

22

2212212
HGMHGM

GMGMHMHMHMGMHGM
∨+⊕+

++=⊗
 

Proof. By definition  

 

                                                                                                                                            
 

By similar method the second Zagreb coindex are obtained.                                              □  
 
Theorem 2.3. Let G and H be graphs. The Randić index of tensor product of G and H is 
computed as follows: 

).()(2)( HRGRHGR =⊗  
Proof. By definition  

).()(2

112

112

),(),(
1)(

)( )(

)( )(

)(),)(,(
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                                                                    □ 
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Theorem 2.4. Let G and H be graphs and G be k-regular. The GA index of tensor product 
of G and H is computed as follows: 

).()(2)( HGAGEHGGA =⊗  
Proof.  By definition 

).()(2
)(

)(

)),(),((
),(),(

)(

)(),)(,( 2
1

)(),)(,( 2
1

)(),)(,( 2
1

HGAGE
dbk

dbk

dcba
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=
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∑

∑

∑

⊗∈

⊗∈
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⊗⊗
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δδδδ
δδδδ

δδ
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                                                                                                                                                □ 

Suppose G is a graph. Define the set )(GETG ⊆  as follows: 

}|)({ triangleaincontainedisabGEabTG ∈= . 

Theorem 2.5. Let G be a graph and nK  be a complete graph of order n. The Harary index 

of tensor product of nK  and G is computed as follows: 

.)()(
2

)()( 6
1

3
2

2
12

Gn TnGEnGV
n

GHnGKH +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⊗  

Proof. By definition of Harary index, 

.
)),(),,((

1)(
)()},)(,{(

∑
⊗⊆

=⊗
GKVdcba

n
n

dcbad
GKH

 

For each )(),(),,( GKVdcba n ⊗∈  exactly one of the following cases hold: 

{ }),(),(,,|)},(),,{(1 dcRbadbcadcbaA ≠≠= , 

{ }),(),(,,|)},(),,{(2 dcRbadbcadcbaA /≠≠= , 

                                   { }dbcadcbaA =≠= ,|)},(),,{(3 , 

                                   { }),(),(,,|)},(),,{(4 dcRbadbcadcbaA ≠== , 

                                   { }),(),(,,|)},(),,{(5 dcRbadbcadcbaA /≠== . 
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Therefore,  

∑

∑

∑

∈ ⊗

∈ ⊗

∈ ⊗

+

+

=⊗

5

3

1

)},)(,{(

)},)(,{(

)},)(,{(

)),(),,((
1

)),(),,((
1

)),(),,((
1)(

Adcba GK

Adcba GK

Adcba GK
n

dcbad

dcbad

dcbad
GKH

n

n

n

 

We evaluate each sums separately. It is obvious, if )(},{ nKVca ⊆ , then 

1),( =cad
nK  and 2),( =′ cad

nK . By using notation of Definitions 1.1 and 1.2, one can see 

that, if ),(),( dcRba / and dbca ≠≠ ,  then, 
),,()}},(),,({)},,(),,({{ dbddbdcadMaxdbdcadMaxMin GGKGK nn

=′′  

),()},(),,({ dbddbdcadMax GGKn
= . 

 

Hence 

 

By attention to the set A3, we have: 

∑∑
∈
⊆∈ ⊗

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

)(
)(},{

2
1

)},)(,{( 2
)(

2
1

)),(),,((
1

3
GVb

KVcaAdcba GK nn

n
GV

dcbad
. 

For computing the 4−th summation, we know that,  
{ }),(|2)(},{),(|),)(,(4 dbdandGVdbKVadabaA Gn ⊆∈= . 

Hence,  

)(
2

2

),(
1

)),(),,((
1

)),(),,((
1

)),(),,((
1

)),(),,((
1
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Now we can compute the 5−th summation, 

∑
∈ ⊗5)},)(,{( )),(),,((

1

Adcba GK dcbad
n

∑
/
⊆

∈ ⊗

=

),(|2
)(},{

)( )),(),,((
1
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n n
dcbad

 

If ),( dbdG is odd then by Theorem 1.3, 
 

)},()},,(,3{{

)}},(),,({)},,(),,({{)),(),,((

dbddbdMaxMin

dbdaadMaxdbdaadMaxMindabad

GG

GKGKGK nnn

′=

′′=⊗  

By attention to different cases for ),( dbdG  and ),( dbdG′ , we can see: 
 

⎪
⎩
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⎨

⎧
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3
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2),(&),(
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≥
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Hence, the following sets are defined: 

}),(3),(),(|)},(),,{{(5 oddisbadanddbdKVadabaA GGn ≥∈=′ , 

                   }2),(1),(),(|)},(),,{{(5 =′=∈=′′ badanddbdKVadabaA GGn , 

                  }4),(1),(),(|)},(),,{{(5 ≥′=∈=′′′ badanddbdGVadabaA GG . 

Thus, 

.
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By above calculations, 
 

          .)()(
2

)()( 6
1

3
2

2
12

Gn TnGEnGV
n

GHnGKH +−⎟⎟
⎠

⎞
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⎛
+=⊗                    

Theorem 2.6. Let G be a graph and nK  be a complete graph of order n. The Schultz and 

modified Schultz indices of tensor product of nK  and G are given by: 

])(2)(2)()1(8)(2[
2

)( 1 ∑ ∉=++ +++−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⊗

GTbde GGn dbGMGEnnGWn
n

GKW δδ , 

].)()12()()1(4)([)1()( 21*
22

* ∑ ∉=
+−+−+−=⊗

GTbde GGn dbdnGMnGMnnGWnnGKW δδ . 

Proof. We just prove the Schultz index of GKn ⊗ , modified Schultz index is obtained 
similarly. By using the proof of Theorem 2.5 and definition of Schultz index, we have:  

∑
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By above calculations, we conclude that:                                   

 

].)(2)(2)()1(8)(2[
2
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