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ABSTRACT 

 
Fullerenes are closed−cage carbon molecules formed by 12 pentagonal and n/2 – 10 
hexagonal faces, where n is the number of carbon atoms. Patrick Fowler in his lecture in 
MCC 2009 asked about the Wiener index of fullerenes in general. In this paper we 
respond partially to this question for an infinite class of fullerenes with exactly 10n 
carbon atoms. Our method is general and can be applied to fullerene graphs with 
centrosymmetric adjacency matrix. 
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1. INTRODUCTION   

A molecular graph is a simple graph such that its vertices correspond to the atoms and the 
edges to the bonds. In a molecular graph, it is convenient to omit hydrogen atoms. A 
fullerene graph is the molecular graph of a fullerene molecule. It is a cubic planar graph 
having pentagonal or hexagonal faces. From Euler’s theorem, one can deduce that an 
n−vertex fullerene graph has exactly 12 pentagonal and (n/2 – 10) hexagonal faces, where 
20 ≤ n (≠ 22) is an even integer. It was elected as the "Molecule of the Year" by Science, 
1991. The C60 fullerene was discovered experimentally by Kroto et al. in 1985. It presents a 
new form of existence of carbon other than graphite, diamond and amorphous carbon [1,2]. 
We encourage the reader to consult [3−7] for more information on the mathematical 
properties of fullerene graphs and papers [8−11] for computational techniques. 
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Suppose G is a graph and x, y ∈ V(G), the set of vertices of G. The distance d(x,y) 
between x and y is defined as the length of a minimal path connecting them. The Wiener 
index [12] of G, W(G), is summation of all distances between vertices of G. It is the first 
graph invariant defined by distance function d: V(G) × V(G) ⎯→   applicable  in 
chemistry.  Since the Wiener index has a successful in study of benzenoid systems and 
boiling point of alkanes it is natural to examine this number for study of fullerenes, which 
most of its cycles are hexagons. 

Diudea and his co−workers [13,14] computed the Wiener index of armchair and 
zig−zag polyhex nanotubes. After publication of these papers, some researchers published 
hundreds of papers in the problem of computing distance−based topological indices of 
nanostructures, but by the best of our knowledge, there is not a published paper which 
presents exact formula for computing the Wiener index of fullerenes in general.  

On the other hand, P. W. Fowler, one of the pioneers of fullerene graphs, in a lecture 
in MCC 2009 asked about Wiener index of fullerenes in general. This paper is partially 
response to this question.  To do this, we compute exact formula for the Wiener index of an 
infinite class of fullerenes with exactly 10n carbon atoms, Figures 1.  

 
2. COMPUTATIONAL DETAILS 

Suppose F is the molecular graph of C10n fullerene, Figure 1. The adjacency matrix of F is 
an n × n matrix A = [aij] defined by aij = 1, if vertices i and j are connected by an edge and, 
aij = 0, otherwise. The distance matrix D = [dij] of F is another n × n matrix in which dij is 
the length of a minimal path connecting vertices i and j, i ≠ j, and zero otherwise.  

To compute the Wiener index of F, we first draw F by HyperChem [15] and then 
apply TopoCluj software [16] of Diudea and his team to compute the adjacency and 
distance matrices of this graph. Finally, we provide a MATLAB program [17] to calculate 
the number of pair of vertices in a given distance. This program is accessible from authors 
upon request. By these numbers and in a simple way, one can compute the Wiener index of 
molecular graphs under consideration.  

We begin by a labeling of F which is important in our calculations. We label a C10n 
fullerene by method given in the Figure 1. 

An n × n matrix A = [ai,j] is called symmetric if jiij aa =  and centrosymmetric when 

its entries satisfy 1,1 +−+−= jninij aa  for 1 ≤ i,j ≤ n. By above labeling one can see that the 

distance matrix of our C10n fullerene is centrosymmetric. In next section this help us to 
partition the distance matrix of F to compute its Wiener index. The main result of this paper 
is as follows: 

Theorem. The Wiener index of C10n is .6703/117533/100)10( −+= nnnCW  
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Figure 1. The Schelegel Diagram of a C10n Fullerene Molecule. 

 

 

 
Figure 2. A Labeling of C80 Fullerene. 
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3. MAIN RESULTS AND DISCUSSION 

Suppose F denotes the molecular graph of our C10n fullerene and k is a positive integer such 
that 1 ≤ k ≤ diam(G), where diam(G) is defined as the maximum distance between vertices 
of F. The aim of this section is to compute the Wiener index of F. To do this, we first 
introduce some notions which are crucial in this paper. The number of unordered pairs of 
vertices u and v of F such that dF(u, v) = k is denoted by d(F,k). It is clear that W(F) = 

∑k[k×d(F,k)]. Suppose [ ]k
ijakF =][ , 1 ≤ k ≤ diam(F), such that ,kk

ija =  when k = dF(i,j), 

and, 0; otherwise. In what follows fifteen 5 × 5 matrices are presented by which it is 
possible to partition the distance matrix of F. These are as follows: 
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We have to prove these matrices are the building blocks of D[F]. To do this, we 
consider the 2n × 2n block matrix D[F] = [Aij], where Aij is a zero 5 × 5 matrix or one of the 
matrices presented in Table 1. If 10 ≤ k ≤ diam(F), then Aij = 0, 1 ≤ i, j ≤ k, and Ak+1,1 = 
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Ak+2,2 = ... = A2n,2n-k =k × J and the other blocks are zero. Since the matrix is symmetric, 
A1,k+1 = A2,k+2 =… = A2n-k,2n = k × J. We have, 

.
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There are (2n − k) blocks equal to J. Thus,  

D(k,C10n) = 25(2n − k) = 50n − 25k.                                     (1) 

 On the other hand, we have: 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×=

00
00

04..
00..

1...
....

..0..
..4..

.00.
..140

.000
.1.

0.
0..0

9)9(

J
J

I

JI
J

I
J

IIJ
J

JI
J

J

F

 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

×=

04
40

.
0..
11...

01...
....
....0

...40
...44

...0
01.

01.
10..0

8)8(

IJ
IJ

II
JI

JJ
J

IJ
II

JI
JI

JI

F

 



104                                             A. GRAOVAC, O. ORI, M. FAGHANI and A. R. ASHRAFI  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′

′

×=

0004
*

0040
03..
00.....
002.....
1100...*

0..0.40
0...300*
....00044

...2300
.1.00

002.
0100.

100..0

7)7(

IJ
IJ

IB

I
IIBJ
JCIJ

JIBJ
II

CII
JI

JCI
JI

JI

F

 

 

Suppose k=9. Then Aij = 0, for 1 ≤ i,j ≤ 9, and A10,1 = A11,2 = … = A2n,2n−9 = 9J. 
Also, A10,3 = A12,4 = … = A2n−2,2n−9 = 9I4 and the other blocks are zero. So, the number of J,s 
are 2n−9 and number of I4,s are n−5. Hence, 

D(9,C10n) = 25×(2n−9) + 5×(n−5) = 55n − 250.                      (2) 

We now compute F(4), F(5) and F(6) as follows: 
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If k=8, then Aij = 0, 1 ≤ i,j ≤ 7, A8,1 = A8,2 = A9,3 = A10,4 = … = A2n−2,2n−8 = A2n−1,2n−7 
= 8I4, A9,1 = A10,2 = … = A2n,2n−8 = 8J and the other blocks are zero. Hence, there are 2n−6 
sub−matrix I4 and 2n−8 sub−matrix J. So,  

 

D(8,C10n) = 5×(2n−6) +25×(2n−8) = 60n−230.                          (3)  
 

We now assume that k = 7. Then Aij = 0, 1 ≤ i,j ≤ 5, A6,3 = A8,5 = A10,7 = A12,9 = … = 
A2n−2,2n−5 = 7I3, A7,1 = A7,2 = A9,4 = A11,6 = A13,8 = … = A2n−1,2n−6 = A2n,2n−6 = 7I4, A8,3 = A10,5 
= A12,7 = … = A2n−2,2n−7 = 7B, A8,1 = A10,3 = A12,5 = … = A2n,2n−7 = 7J*, A9,2 = A11,4 = A13,6 = 
… = A2n−1,2n−8 = 7J and the other blocks are zero. One can see that the number of J, J*, B, I4 
and I3 are (n−4) , (n−3), (n−4) , (n−1) and (n−3), respectively. Therefore,  

 

D(7,C10n) = 25×(n−4) + 20×(n−3) + 10×(n−4) + 5×(n×1) + 5×(n−3) = 65n−220.            (4) 
 

If k = 6 then Aij = 0, 1 ≤ i,j ≤ 3, A4,2 = A5,3 = A6,4 = A7,5 = … = A2n−1,2n−3 = 6I3, A6,1 = 
A6,2 = A7,3 = A8,4 = … = A2n−1,2n−5 = A2n,2n−5 = 6B, A7,1 = A8,2 = A9,3 = … = A2n,2n−6 = 6J* and 
the other blocks are zero. On the other hand, the number of J*, B and I3 are (2n−6), (2n−4) 
and (2n−4), respectively. Therefore,  

 

D(6,C10n) = 20×(2n−6) + 10×(2n−4) + 5(2n−4) = 70n−180.             (5) 
 

Suppose k = 5. Then Aij = 0, 1 ≤ i,j ≤ 2, A4,1 = A3,2 = A5,4 = A7,6 = A9,8 = … = 
A2n−1,2n−2 = 5I3, A5,1 = A5,2 = A7,4 = A9,6 = … = A2n−1,2n−4 = A2n,2n−4 = 5B, and A7,2 = A9,4 = 
A11,6 = … = A2n−1,2n−6 = 5J*, A4,3 = A6,5 = A8,7 = … = A2n−2,2n−3 = 5D, A6,3 = A8,5 = … = 
A2n−2,2n−5 = 5E, A6,1 = A8,3 = … = A2n,2n−5 = 5X and the other blocks are zero. Also, the 
number of J*, B, D, E, X and I3 are (n−3), n, (n−2), (n−3), (n−2) and (n+1), respectively. 
Therefore  

 

D(5,C10n) = 20×(n−3) + 10n + 10×(n−2) + 10×(n−3) + 15×(n−2) + 5×(n+1) = 70n−135.   (6) 
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Finally, we assume that k = 4. Then A11 = 0, A2,2 = A3,3 = A4,4 = A5,5 = … = A2n−1,2n−1 = 
4D, A3,1 = A2n,2n−2 = 4I3, A4,1 = A4,2 = A5,3 = A6,4 = … = A2n−1,2n−3 = A2n,2n−3 = 4E, A5,1 = A6,2 
= A7,3 = … = A2n,2n−4 = 4X and the other blocks are zero. On the other hand, the number of 
D, E, X and I3 are (2n−2), (2n−2), (2n−4) and 2, respectively. Therefore,  

 

D(4,C10n) = 10×(n−1) + 10×(2n−2) + 15×(2n−4) + 5×2 = 60n−80.             (7) 
 

We are now ready to state our main result: 
 
Theorem. The Wiener index of C10n is computed as follows: 
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Proof. By above calculations, diam(C10n) = 2n – 1.  
Apply Eq. (1) and W(F) = ∑k[k × d(F,k)], we have 
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D(1,C10n) = 15n, D(2,C10n) = 30n and D(3,C10n) = 45n−30, where n ≥ 2.  Also, by Eqs. 

(2−7), .779526509
1 )10,( −== ×∑ ni nCiDi  This completes our proof.                                   ■ 

 

4. CONCLUDING REMARKS 

In the MCC 2009, P. W. Fowler asked about formula for computing Wiener index of 
fullerenes. In this paper a class of fullerene graphs with exactly 10n vertices is considered. 
A matrix method is presented by which it is possible to compute the Wiener index of 
Fullerenes. We believe that our matrix method is general and can be applied to other class 
of fullerenes. By our calculation one can easily compute the Hosoya polynomial of C10n 
fullerenes. Moreover, our calculations suggest the following conjectures: 
 

Conjecture 1: The adjacency matrix of fullerene graphs is centrosymmetric. 
 

Conjecture 2: If Xn is an infinite sequence of fullerenes then W(Xn) is a polynomial of 
degree 3. 
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