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ABSTRACT 

 In this paper, a new molecular-structure descriptor, the general sum–connectivity co–index 

  is considered, which generalizes the first Zagreb co–index and the general sum–
connectivity index of graph theory. We mainly explore the lower and upper bounds in terms 
of the order and size for this new invariant. Additionally, the Nordhaus–Gaddum–type result 
is also represented. 
 
Keywords: general sum–connectivity co–index; first Zagreb co–index; lower and upper 
bounds. 

 

 

1. INTRODUCTION 

Throughout this paper all graphs will be considered simple, unless otherwise specified. 
That is to say, there is at most one edge joining any pair of vertices. Other terminology and 
notations will be introduced as it naturally occurs in the following and we use those not 
defined here [1]. Let ( , )G V E  be a simple graph, with vertex set V  and edge set E , on 

| |n V  vertices and | |m E  edges. 

The degree of a vertex u V  is denoted by deg ( )G u , or deg( )u  when no confusion 
is possible. The minimum and maximum degrees of G  is denoted by   ( )G  and ( )G , 
respectively. As usual, a graph in which every vertex has equal degree k  is said to be k -
regular. The complement of G , denoted by G , is a simple graph with vertex set V V , 
and edge set E  in which two vertices u  and v  are adjacent if and only if they are not 
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adjacent in G . For simplicity, we let | |m E  amd | |m E , hence 
2
n

m m  
   

 
 and the 

degree of the same vertex u in G  is then given by deg ( ) 1 deg ( )GG u n u   , respectively. 

The first Zagreb index [2] was recently originally defined as follows: 

 2)(1 )deg()(   GVu uGM  

It can be also expressed as the sum over all edges of  
  


)(1 )deg()deg()(:

GEuv
vuGMG  

The first Zagreb index can be viewed as the contribution of pairs of adjacent 
vertices to additively weighted versions of Wiener numbers and polynomials [3]. Curiously 
enough, it turns out that analogous contribution of nonadjacent pairs of vertices must be 
taken into account when calculating the weighted Wiener polynomials of certain composite 
graphs [4]. Such quantity is said to be the first Zagreb co–index since the sums involved run 
over the edges of graph G . The first Zagreb co–index of a graph G  is more formally 
defined as [5]: 

  


)(1 )deg()deg()(:
GEuv

vuGMG  

This invariant was introduced in the hope of improving our ability to quantify the 
contribution of pairs of non–adjacent vertices to properties of graphs. We encourage the 
interested reader to [7] for some recent results on the extreme values of Zagreb co–indices 
over several classes of graphs. More recently, Zhou and his co-workers proposed a graph 
invariant, called the general sun–connectivity index [8]: 

( )
( ) [deg( ) deg( )]

uv E G
G u v 




=  

Motivated by this information, in this paper, we focus also our attention to contributions 
from the pairs of non-adjacent vertices of graph G  and introduce a new invariant, the 
general sum-connectivity co-index, which is defined as: 

( )
( ) [deg( ) deg( )]

uv E G
G u v 




=  

 The reader should note that the general sum–connectivity co-index of G  is not the 
general sum–connectivity index of G , the defining sums run over all edges of G , but the 
degrees are with respect to G . Note that for 1   we obtain the first Zagreb co–index 

1( )M G . Thus the general sum–connectivity co–index generalizes the first Zagreb co–index 
and the general sum–connectivity index of chemical graph theory. 
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In Section 4, we will explore the lower and upper bounds in terms of order and size 
of graphs for general sum–connectivity co–index. The Nordhaus–Gaddum–type results for 
the general sum–connectivity co–index is also considered and will be viewed in Section 5. 
 

2.  CLOSED FORMULAE FOR SEVERAL FAMILIES OF GRAPHS 
 
In this section, the general sum–connectivity index and co–index considered for several 
families of graphs can be given by closed formulae in terms of the number of vertices. Let 

nK , nC  and nP  be the complete graph, the cycle graph and the path graph with order n . 
Let ,s tK  be the complete bipartite graph with s  and t  vertices in its two partite sets, and let 

kQ  denote the hypercube graph for 2k   as usual, respectively. 
 
1.1. Complete graph 
(1) 11 )1(2)(   

 nnKn ; (2) .0)( nK  
1.2. Cycle graph 
(1) 2( ) 2nC n

  ; (2) .)4(2)( 12   nnCn


  
1.3.  Path graph 
(1) 2( ) 2 3 ( 3)nP n 

     2 ;  (2) .23)1(2)2)(1(2)( 12 
   nnnPn  

1.4. Complete bipartite graph 
(1) ,( ) ( )s tK st s t 

   ;  (2) .)1(2)1(2)( 11
,


 stttssK ts    

1.5. Hypercube graph 
(1) 1 1( ) 2 k

kQ k 


   ;  (2) .)12(2)( 1   kkQ kk
k


  

 

3.         PRELIMINARY LEMMAS 

To obtain our main results, we first give some lemmas as necessary preliminaries. 
 

Lemma 3. 1. Let 1x , 2x , …, kx  be k  non–negative integers . Each of the following holds: 
 

(1) If 1  , then 1 2 1 2( )k kx x x x x x           , with equality if and only 
if at most one i 0x  . 

(2) If 0 1  , then 1 2 1 2( )k kx x x x x x           , with equality if and 
only if at most one i 0x  . 
Proof. By induction on k . We show firstly the case of 1  . It is trivial if 1k  . If 2k  , 
then 1 2 1 2( )x x x x     , since 
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1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1
( )
x x x x x x
x x x x x x x x x x

  



       
                      

 

 

 Assume that 1 2 1 2( )t tx x x x x x           . By the induction hypothesis,  

1 2 1 1 2 1 1 2 1( ) ( )t t t t tx x x x x x x x x x x      
                  

This completes the proof of the first statement. If 0 1  , then 
1 1 1 1

1 2 1 2 1 2( ) ( ) ( ) ( )t t tx x x x x x x x x                      
i.e., 1 2 1 2( )k kx x x x x x           . Moreover, the equality is obtained if and only 
if there at most one i 0x  . 

We recall that if ( ) 0x   ( 0 ), for the real value function ( )x  defined on an 
interval, then ( )x  is a convex (concave) function. The fundamental discrete Jensen's 
inequalities say that:  
 
Lemma 3. 2. (G. H. Hardy et al. [9]) Let C be a convex subset of a real vector space X , let 

ix C  and 0i   ( 1i  , 2 , , n ) with 
1

1
n

i
i




 . Then  

 (1) 
1 1

( )
k k

i i i i
i i

x x 
 

 
   
 
   if ( ) :x C R   is a convex function. 

 (2) 
1 1

( )
k k

i i i i
i i

x x 
 

 
   
 
   if ( ) :x C R   is a concave function.   

The following result was obtained by K. Ch. Das and I. Gutman in a paper about Zagreb 
indices [5]. 
 
Lemma 3. 3.  (K. Ch. Das and I. Gutman [5]) Let G  be a simple graph with order n  and 
size m . Then 1 1( ) 2 ( 1) ( )M G m n M G   . 
 
 Ashrafi, Došlić and Hamzeh also gave the result of Lemma 3.3 in [6]. 
 

4.       BOUNDS FOR THE GENERAL SUM–CONNECTIVITY CO–INDEX 
 
Now we define a class nQ  of graphs of order n , which consists of simple graphs, each of 
which satisfies deg( ) deg( )u v c   for each edge e uv  and some constant c . In particular, 
the complete graph nK  and the complete bipartite graph ,s tK  are belong to nQ . 
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Lemma 4. 1. Let G  be a simple graph with order n  and size m . Each of the following 
holds: 

(1) If 0 1  , then 
1

1( ) ( )G M G m





  , the upper bound attains on 1 nH Q . 

(2) If 1   or 0  , then 
1

1( ) ( )G M G m





  , and the lower bound attains on 

2 nH Q  
 

Proof. Let ( )x x  , where 0x   and {0,1}R   . It is obvious that the second 

derivative 2( ) ( 1)x x     , then ( ) 0x   if 1   or 0   and ( ) 0x   if 
0 1  , i.e., ( )x  is a convex function if 1   or 0   and is concave one otherwise. 
If 0 1  , in view of Lemma 3.2, we obtain 

1
( ) ( )

1 1 1 1( ) [deg( ) deg( )] [deg( ) deg( )] ( )
uv E G uv E G

M G u v u v G
m m m m





 

            
   

This states that 
1

1( ) ( )G M G m





  , and the upper bound attains if and only if 

deg( ) deg( )u v  is a constant for each edge uv , which implies that 1G H  is a graph in nQ  
By analogous arguments we can complete the proof of the rest part.  
 

In view of Lemma 3.3, we immediately have the following. 
 
Corollary 4. 2. Let G  be a simple graph with order n  and size m . Each of the following 
holds: 

(1) If 0 1  , then 
1

1( ) (2 2 ( ))G mn m M G m





    , the upper bound attains 

on 1 nH Q . 

(2) If 1   or 0  , then 
1

1( ) (2 2 ( ))G mn m M G m





    , and the lower 

bound attains on 2 nH Q . 
 
The authors in [10, 11] presented some lower and upper bounds for the first Zagreb 

index, from which and Corollary 4.2, we may deduce some bounds for the general sum–
connectivity co–index of graphs. We present some examples: 

 
(I) Let G  be a simple graph with order n  and size 1m  . Then 

1
2( ) 2

1
mM G m n

n
     

, with equality if and only if nG K , nS  or 1, 1 1 1n nK K K   , see 

[10], and thus if 1  , we have  
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1 2( )
1

mG m m n
n





      

 

with equality if and only if nG K  or 1, 1 1 1n nK K K   . 

  
 (II)  Let G  be a simple graph with order n  and size 1m  . Then for any real 
number        0 1  , we have that 

1 2( ) 2 1 mG m m n
n


 


        

 

since 
2 2

2
1

( ) ( )

1 4( ) [deg( )] deg( )
u V G u V G

mM G u u
n n 

 
   

 
  . 

(III) Let G  be a simple graph with order n , size 1m  , maximum degree   and 

minimum degree  . Then, see [11] 
2

1
4 2 ( 1)( )( ) m m nM G

n



  


  

, with equality if and 

only if G  is a regular graph or ,nS   (called a double star obtained from S  and nS   by 

connecting the center of S  with that of nS  ) or 1 1nK K   . Thus for 1   we have  

1 ( 1) 2( ) 2 n n mG m m
n


 

 
          

 

with equality if and only if G  is a regular graph or ,nS  . 

 
Note that the lower bound is best possible. Let G  be a k –regular, and for 1  , we 

let 
1 ( 1) 2( , , ) 2 n n mG n m m

n


 


           

, then the value of the general sum–

connectivity co–index of k -regular graphs can be written 
1

( )

( 1)( ) [deg( ) deg( )] ( ) 2 ( 1) ( , , ).
2 2uv E G

n n knG u v kn n n k G n k k  






           
  

 
Theorem 4. 3. Let G  be a simple graph with order 2n  . Each of the following holds: 
 (1) If 0 1  , then 1( ) ( )G M G 

  , the lower bound attains either on 

2 2nG K K    or nG K . 

(2) If 0  , then 1( ) 2 ( 2)G n n


  , the upper bound attains uniquely on 22
n K . 

 

Proof. If 0 1  , then by Lemma 3.1, we obtain  
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1
( ) ( )

( ) [deg( ) deg( )] deg( ) deg( ) ( )
uv E G uv E G

G u v u v M G


 


 

 
     

 
   

The lower bound attains if and only if | | 1E  , this implies that 2 2nG K K    or nG K . If 
0  , we obtain  

1

( ) ( )

( )( ) [deg( ) deg( )] (2 ) (2 ) 2 ( 2)
2uv E G uv E G

n GG u v n n   
   

 


      

 
The upper bound attains if and only if G  is regular and ( ) 2G n   , this implies that 

22
nG K . 

 

Theorem 4.4. Let G  be a triangle-free graph with order n  and size 1m  . Each of the 
following holds: 

(1)  If 0  , then 1 1( ) 2 ( 1)G n n mn 


    , the upper bound attains if and only 

if G  is a complete bipartite graph. 
(2) If 0  , then 1 1( ) 2 ( 1)G n n mn 


    , the lower bound attains if and only 

if G  is a complete bipartite graph. 
 

Proof. Let ( )x x   be a function defined as previous, the derivative 1( )x x   , then 
( ) 0x   if 0   and ( ) 0x   if 0  , i.e., ( )x  is an increasing function if 0   

and is a decreasing one if 0  . It is seen that deg( ) deg( )u v n   holds for each edge uv  

of graph G , so we obtain if 0   
1 1

( )( )

( ) [deg( ) deg( )] 2 ( 1)
uv E Guv E G

G u v n mn n n mn    


 



         

the upper bound attains if and only if deg( ) deg( )u v n   for each edge of graph G , this 

implies that G  is a complete bipartite graph. By analogous argument, we can complete the 
rest proof. 

From Theorem 4.4, we have the following: 
 

Corollary 4.5. Let T  be a tree with order 2n  . Each of the following holds: 
 

(1) If 0  , then 1( ) 2 ( 1)( 2)T n n n


   , the upper bound attains uniquely on 1, 1nK  . 

(2) If 0  , then 1( ) 2 ( 1)( 2)T n n n


   , the lower bound attains uniquely on 1, 1nK  . 

  
 Corollary 4.5 implies the following result, which characterizes trees with extremal 
general sum–connectivity co–index. 
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Corollary 4.6. Among all trees with order 2n  , the star 1, 1nK   is the unique extremal 

structure with maximum general sum–connectivity co-index for 0  , and with minimal 
general sum–connectivity co-index for 0  . 
 

5.     NORDHAUS–GADDUM–TYPE RELATION FOR ( )G  

Let I  be an invariant of G , we denote by I  the same invariant but in G . Nordhaus–
Gaddum–type relations for the graph invariant I  are the inequalities of the following form: 

1 1( ) ( )L n I I U n    and 2 2( ) ( )L n I I U n   , 

where 1( )L n  and 2 ( )L n  are the lower bounding functions of the order n , and 1( )U n  and 

2 ( )U n  upper bounding functions of the order n . These types of relations are named after 
Nordhaus and Gaddum [12], who were the first authors to give such relations, namely: 

2 1n n      and 
2

1
2

nn             
, 

where   is the chromatic number of a graph. The extremal graphs for the inequalities were 
characterized by Finck may be found in [13]. Since then many graph theorists have been 
interested in finding such relations for various graph invariants. 
 In this section, we will give Nordhaus–Gaddum–type result for the general sum–
connectivity co–index in terms of the number of vertices of the graph. 
 
Theorem 5.1. (Zhang and Wu [14]) Let G  be a simple graph with order n . The following 
hold: 
 (1) If 1  , then 12 ( 1) ( ) ( ) ( 1)n n M G M G n n  

 
      , the upper bound 

attains uniquely on nG K , and the lower bound attains uniquely on 1
2

n 
regular graphs. 

 (2) If 0 1  , then 1( 1) ( ) ( ) 2 ( 1)n n M G M G n n  
 

     , the upper bound 

attains uniquely on 1
2

n  -regular graphs, and the lower bound attains uniquely on nG K . 

 (3) If 0  , then 12 ( 1) ( ) ( ) [1 ( 1) ]n n M G M G n n  
 

       , the upper bound 

attains on the graph nH  obtained from nK  by deleting a perfect matching ( n  is even), and 

the lower bound attains uniquely on  1
2

n  –regular graphs. 

  
 From Lemma 3.3 and Theorem 5.1, we obtain the following. 
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Corollary 5.2. Let G  be a simple graph with order n . Then 
1 2

1 10 ( ) ( ) 2 ( 1)M G M G n n    , the lower bound attains on nG K , and the upper bound 

attains uniquely on 1
2

n 
regular graphs. 

Theorem 5.3. Let G  be a simple graph with order n . The following hold: 
 (1) If 1  , then 1 10 ( ) ( ) 2 ( 1)G G n n 

        , the lower bound attains either 

on nG K  or nG K , and the upper bound attains uniquely on  1
2

n  -regular graphs. 

 (2) If 0  , then 0 ( ) ( ) 2 ( 2)G G n n
      , the lower bound attains uniquely 

on 22
n K , and the upper bound attains either on nG K  or nG K . 

Proof. (1) If 1  , ( )x x  , defined as in Theorem 4.1, is a strictly convex function, 
then we have by Corollary 5.2 

( ) ( )

( ) ( )

1 1

( ) ( ) [deg ( ) deg ( )] [deg ( ) deg ( )]

[deg ( ) deg ( )] [deg ( ) deg ( )]

( ) ( )

G G G G
uv E G uv E G

G G G G
uv E G uv E G

G G u v u v

u v u v
m m

m m

m m M G M G

 
 





 
 

 

   

  
   
  

   

 

 

１ －

＝

＋

　 　 　 　 　 　 　（ ＋ ） 　
＋

　 　 　 　 　 　 ＝　 （ ＋ ） 0　 　

 

with equality if and only if either deg ( ) deg ( )G Gu v ＝ｎ - 1 for each edge uv  or there is 

no edge in graph G . This implies that nG K  or nG K . On the other hand, 
 

( ) ( )

1 1

( ) ( ) [deg ( ) deg ( )] [deg ( ) deg ( )]

1 1 1 1 ( )( 1) 2 ( 1)

G G G G
uv E G uv E G

G G u v u v

n n n nm m m m n n n

 
 

 
 

 
 

 

   

                    

 ＝

　 　 　 　 　 　 　 　
2 2 2 2

 

 
Note that the upper bound is best possible. In fact, for any 4 1n k  , 1k  , there exists a 

graph nG  with nG  and nG  are 1
2

n  -regular. Then nG  is a graph whose ( ) ( )G G    

attains the upper bound. 
 

(2) If 0  , by Theorem 4.3, we obtain that  
 

1 1( ) ( ) 2 ( 2) 2 ( 2) 2 ( 2)G G n n n n n n  
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the upper bound attains uniquely on 22
n K . By analogous arguments as (1), we obtain that 

( ) ( ) 0G G     for 0  , and the lower bound attains uniquely on nG K  or nG K . 
This completes the proof. 
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