Hyperdiamonds: a topological view

Mircea V. Diudea ${ }^{\mathbf{1 , \bullet}}$, Aleksandar Ilić ${ }^{\mathbf{2}}$ and Mihai Medeleanu ${ }^{\mathbf{3}}$
${ }^{1}$ Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, Arany Janos Str. 11, 400028, Cluj, Romania
${ }^{2}$ Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
${ }^{3}$ Faculty of Industrial Chemistry and Environmental Engineering, University "Politehnica" Timisoara, P-ta Victoriei, nr. 2, RO-300006 Timisoara, Romania

(Received April 20, 2011)

Abstract

Hyperdiamonds are covalently bonded fullerenes in crystalline forms, more or less related to diamond, and having a significant amount of sp3 carbon atoms. Design of several hypothetical crystal networks was performed by using our original software programs CVNET and NANO-STUDIO. The topology of the networks is described in terms of the net parameters and several counting polynomials, calculated by NANO-STUDIO, OMEGA and PI software programs.

Keywords: Hyperdiamond, crystal-like network, molecular topology, counting polynomial.

1 Introduction

Since 1985, when C_{60} was discovered, a new period, called "nano-era", has started in science and technology. This period is dominated by the carbon allotropes, which are studied for applications in nano-technology. Among the carbon structures, fullerenes (zerodimensional), nanotubes (one dimensional), graphene (two dimensional), diamond and spongy nanostructures (three dimensional) were the most studied [1-3], both from theoretical reasons and applications perspective. Inorganic compounds also attracted the attention of scientists. Recent articles in crystallography promoted the idea of topological description and classification of crystal structures [4-7].

Diamond D_{6} (Figure 1), the beautiful classical diamond, with all-hexagonal rings of sp^{3} carbon atoms crystallized in a face-centered cubic network (space group $F d 3 m$), has kept its leading interest among the carbon allotropes, even as the "nano" varieties [8-13]. Its

[^0]mechanical characteristics are of great importance, as the composites can overpass the resistance of steel or other metal alloys. Synthetic diamonds can be produced by a variety of methods, including high pressure-high temperature HPHT static or detonation procedures, chemical vapor deposition CVD [14], ultrasound cavitation [15], or mechanosynthesis [16], under electronic microscopy.

Figure 1. Diamond D_{6} : adamantane $D_{6 _} 10 _100$ (left), diamantane $D_{6} _14 _211$ (central) and diamond D_{6} 52_222 net (right)

However, the diamond D_{6} is not unique: a hexagonal network (space group $P 6_{3} / m m c$ Figure 2), called lonsdaleite [17], was discovered in a meteorite in the Canyon Diablo, Arizona, in 1967. Several diamond-like networks have also been proposed [2,18,19].

Figure 2. Losdaleite: $\mathrm{L}_{6}{ }^{12}$ _111 (left), $\mathrm{L}_{6} _18 _211$ (central) and $\mathrm{L}_{6}{ }^{4} 48 _222$ net (right)
Multi-tori MT are structures of high genera [1-3], consisting of more than one tubular ring. They are supposed to result by self-assembly of some repeating units (i.e., monomers) which can be designed by opening of cages/fullerenes or by appropriate map/net operations. Multi-tori appear in processes of self-assembling of some rigid monomers [20]. Zeolites and spongy carbon [21,22] also contain multi-tori. Multi-tori can be designed starting from the Platonic solids, by using appropriate map operations [23-25].

In a previous study, Diudea and Ilić [26] described some multi-tori (see Figure 3) constructed by using a unit designed by the map operation sequence $\operatorname{Trs}\left(P_{4}(\mathrm{~T})\right.$). These structures consist of all pentagonal faces, observing the triangles disappear (as faces) in the building process.

Hyperdiamonds are covalently bonded fullerenes in crystalline forms, more or less related to the diamond D_{6}, having a significant amount of sp^{3} carbon atoms.

Design of several hypothetical crystal networks was performed by using our original software programs [1] CVNET and NANO-STUDIO. Topological data were provided by NANO-STUDIO, OMEGA and PI software programs.

Figure 3. Multi-tori M_{17} (left) and M_{57} (right) $v=972 ; e=1770 ; f_{5}=684$
The article is structured as follows. After the introductory part, the main networks: Diamond D_{5}, Lonsdaleite L_{5} and Hyper Boron Nitride are presented in detail. Two sections with basic definitions in Omega polynomial and in Omega related polynomials, respectively, will be next developed. In the last part, the topology of the classical diamond and the three hyperdiamond nets will be presented. Conclusions and references will close the article.

2. DIAMOND D 5 NETWORK

Diamond \mathbf{D}_{5}, recently theorized by Diudea and collaborators [26-30], is a hyperdiamond, of which seed is the centrohexaquinane C_{17} (Figure 4, left).

Figure 4. The seed C_{17} (left) and the multi-cage $\mathrm{C}_{57}: v=57 ; e=94 ; r_{5}=42$ (right)
C_{17} can dimerize (by a synchron cycloaddition) to $2 \times \mathrm{C}_{17}=\mathrm{C}_{34}$ (Figure 5) and next condensing up to the multi-cage C_{57} (Figure 4, right) or to the adamantane-like ada_20_170 (Figure 5, right), or without wings, as in ada_20_158 (Figure 6, left). Compare this with adamantane (Figure 1, left) in the structure of classical diamond D_{6}. In the above symbols, " 20 " refers to C_{20}, which is the main unit of the hyper- diamond D_{5}, while the last number counts the carbon atoms in the structures.

A diamantane-like unit is evidenced, as in Figure 7 (see for comparison the diamantane, Figure 1, central). Since any net has its co-net, the diamond $\mathrm{D}_{5} 20$ net (Figure 8, left) has the co-net $\mathrm{D}_{5} 28$ (Figure 8, right), of which corresponding units are illustrated in Figures 6 (right) and 7 (right), respectively. In fact, there is one and the same triple
periodic D_{5} network, built up basically from C_{20} and having as hollows the fullerene C_{28}. The co-net $\mathrm{D}_{5} _28$ cannot be reached from C_{28} alone since the hollows of such a net consist of C_{57} units (a C_{20}-based structure, see above) or higher tetrahedral arrays of C_{20} thus needing extra C atoms per ada-like unit.

Figure 5. Way to ada_20: $2 \times \mathrm{C}_{17}=\mathrm{C}_{34}$ (left and central) and ada_20_170 (right).

Figure 6. Adamantane-like structures: ada_20_158 (left) and ada_28_213 (right)

Figure 7. Diamantane-like structures: dia_20_226_222 net (left) and dia_28_292_222 co-net (right)

Figure 8. Diamond $\mathrm{D}_{5} _20 _860 _333$ net (left) and D_{5} 28_ $1022 _333$ co-net (right)

The hyperdiamond D_{5} 20/28 mainly consists of sp^{3} carbon atoms building ada-like repeating units (including C_{28} as hollows). The ratio $\mathrm{C}-\mathrm{sp}^{3} / \mathrm{C}$-total trends to 1 in a large enough network. As the content of pentagons R[5] per total rings trend to 90% (see Table 3, entry 9) this, yet hypothetical carbon allotrope, was called the diamond D_{5}.

Energetic data, calculated at various DFT levels [29,30] show a good stability of the start and intermediate structures. Limited cubic domains of the D_{5} networks have also been evaluated for stability, data proving a pertinent stability of D_{5} diamond. Density of the D_{5} network was calculated to be around $2.8 \mathrm{~g} / \mathrm{cm}^{3}$.

It is noteworthy that $D_{5} 20 / 28$ net was identified, in the space fullerene theory [6,7,31], as the Frank-Kasper mtn structure, appearing in "type II clathrate hydrates"; space group Fd-3m, point symbol net: $\left\{5^{\wedge} 5.6\right\} 12\left\{5^{\wedge} 6\right\} 5,4,4,4$-c trinodal net [32].

3. Lonsdaleite L_{5} Network

By analogy to $\mathrm{D}_{5} 20 / 28$, a lonsdaleite-like net was proposed [30] (Figure 9). The hyper-hexagons L_{5} 28_134 (Figure 9, central and right), of which nodes represent the C_{28} fullerene, was used as the monomer (in the chair conformation). Its corresponding co-net $\mathrm{L}_{5} 20$ was also designed. The lonsdaleite $\mathrm{L}_{5} 28 / 20$ is partially superimposed on $\mathrm{D}_{5} _20 / 28$ net. In crystallography, it is known as the mgz-x-d net, with the point symbol: $\left\{5^{\wedge} 5.6\right\} 12\left\{5^{\wedge} 6\right\} 5 ; 4,4,4,4,4,4,4-\mathrm{c}, 7$-nodal net [32].

Figure 9. Losdaleite: $\mathrm{L}_{5} 28$ _250 (side view, left), $\mathrm{L}_{5} 28$ _134 (side view, central) and L5_28_134 (top view, right).

4. Hyper Boron Nitride

Boron nitride is a chemical crystallized basically as the carbon allotropes: graphite (h-BN), cubic-diamond $\mathrm{D}_{6}(\mathbf{c - B N})$ and lonsdaleite L_{6} (wurtzite w-BN). Their physicochemical properties are also similar, with small differences.

Fullerene-like cages have been synthesized and several theoretical structures have been proposed for these molecules [33-39].

Based on $\mathrm{B}_{12} \mathrm{~N}_{12}$ unit, designed by $\operatorname{Tr}(\mathrm{Oct})$ or $\operatorname{Le}(\mathrm{C})$ map operation, we modeled three domains of 3D arrays: a cubic domain (k, k, k), Figure 10, a dual of cubeoctahedron domain (k_all), Figure 11 and an octahedral domain (k_basis), Figure 12.

Figure 10. Boron nitride $B_{12} N_{12}$: truncated octahedron (left), a cubic ($3,3,3$)_432 domain built up from truncated octahedra joined by identifying the square faces (central) and its corner view (right).

Figure 11. Boron nitride $\mathrm{B}_{12} \mathrm{~N}_{12}$: dual of cubeoctahedron (left), a (3,3,3)_648 domain constructed from truncated octahedra joined by identifying the square and hexagonal faces, respectively, by following the dual of cubeoctahedron structure (central) and its superposition with the cubic ($3,3,3$)_432 domain (right).

Figure 12. Boron nitride $\mathrm{B}_{12} \mathrm{~N}_{12}$: an octahedral (4,4,4)_480 domain: (1,1,0-left), ($0,0,1$-central) and (2,1,1-right) constructed from truncated octahedra joined by identifying the square and hexagonal faces, respectively.

The topology of the above hyperdiamond structures will be described by using the net parameter k, meaning the number of repeat units along the chosen 3D direction, and by the formalism of several counting polynomials, the largest part being devoted to Omega polynomial.

5. Relations Co and Op

Let $G=(V(G), E(G))$ be a connected graph, with the vertex set $V(G)$ and edge set $E(G)$. Two edges $e=(u, v)$ and $f=(x, y)$ of G are called co-distant (briefly: e co f) if the notation can be selected such that $[1,40,41]$

$$
\begin{equation*}
e \operatorname{co} f \Leftrightarrow d(v, x)=d(v, y)+1=d(u, x)+1=d(u, y) \tag{1}
\end{equation*}
$$

where d is the usual shortest-path distance function. Relation co is reflexive, that is, e co e holds for any edge e of G and it is also symmetric: if e co f then also $f c o e$. In general, co is not transitive.

For an edge $e \in E(G)$, let $c(e):=\{f \in E(G) ; f$ co $e\}$ be the set of edges codistant to e in G. The set $c(e)$ is called an orthogonal cut (oc for short) of G, with respect to e. If G is a co-graph then its orthogonal cuts $C(G)=c_{1}, c_{2}, . ., c_{k}$ form a partition: $E(G)=c_{1} \cup c_{2} \cup \ldots \cup c_{k}, \quad c_{i} \cap c_{j}=\varnothing, i \neq j$.

A subgraph $H \subseteq G$ is called isometric if $d_{H}(u, v)=d_{G}(u, v$, for any $(u, v) \in H$; it is convex if any shortest path in G between vertices of H belongs to H. The n-cube Q_{n} is the graph whose vertices are all binary strings of length n, two strings being adjacent if they differ in exactly one position [42]. A graph G is called a partial cube if there exists an integer n such that G is an isometric subgraph of Qn .

For any edge $e=(u, v)$ of a connected graph G let $n_{u v}$ denote the set of vertices lying closer to u than to $v: n_{u v}=\{w \in V(G) \mid d(w, u)<d(w, v)\}$. By definition, it follows that $n_{u v}=\{w \in V(G) \mid d(w, v)=d(w, u)+1\}$. The sets (and subgraphs) induced by these vertices, $n_{u v}$ and $n_{v u}$, are called semicubes of G; these semicubes are opposite and disjoint [41,43,44].

A graph G is bipartite if and only if, for any edge of G, the opposite semicubes define a partition of $G: n_{u v}+n_{v u}=v=|V(G)|$.

The relation co is related to the \sim (Djoković [45]) and Θ (Winkler [46]) relations:

$$
\begin{equation*}
e \Theta f \Leftrightarrow d(u, x)+d(v, y) \neq d(u, y)+d(v, x) \tag{2}
\end{equation*}
$$

LEMMA 1. In any connected graph, $c o=\sim$.
In general graphs, we have $\sim \subseteq \Theta$ and in bipartite graphs $\sim=\Theta$. From this and the above lemma, it follows [41]

PROPOSITION 2. In a connected graph, $c o=\sim$; if G is also bipartite, then $c o=\sim=\Theta$.

THEOREM 3. In a bipartite graph, the following statements are equivalent [41]:
(i) G is a co graph;
(ii) G is a partial cube;
(iii) All semicubes of G are convex;
(iv) Relation Θ is transitive.

Equivalence between (i) and (ii) was observed in Klavžar [47], equivalence between (ii) and (iii) is due to Djoković [45], while the equivalence between (ii) and (iv) was proved by Winkler [46].

Two edges e and f of a plane graph G are in relation opposite, e op f, if they are opposite edges of an inner face of G. Then e co f holds by assuming the faces are isometric. Note that relation co involves distances in the whole graph while op is defined only locally (it relates face-opposite edges). A partial cube is also a co-graph but the reciprocal is not always true. There are co-graphs which are non-bipartite [48], thus being non-partial cubes.

Relation op partitions the edge set of G into opposite edge strips ops: any two subsequent edges of an ops are in op relation and any three subsequent edges of such a strip belong to adjacent faces.

LEMMA 4. If G is a co-graph, then its opposite edge strips ops $\left\{s_{k}\right\}$ superimpose over the orthogonal cuts ocs $\left\{c_{k}\right\}$.

Proof. Recall the co-relation is defined on parallel equidistant edges relation (1). The same is true for the op-relation, with the only difference (1) is limited to a single face. Suppose e_{1}, e_{2} are two consecutive edges of ops; by definition, they are topologically parallel and also co-distant (i.e., belong to ocs). By induction, any newly added edge of ops will be parallel to the previous one and also co-distant. Because, in co-graphs, co-relation is transitive, all the edges of ops will be co-distant, thus ops and ocs will coincide.

COROLLARY 5. In a co-graph, all the edges of an ops are topologically parallel.
Observe the relation co is a particular case of the edge equidistance eqd relation. The equidistance of two edges $e=(u v)$ and $f=(x y)$ of a connected graph G includes conditions for both (i) topologically parallel edges (relation (1)) and (ii) topologically perpendicular edges (in the Tetrahedron and its extensions - relation (3)) [43,49]:

$$
\begin{equation*}
e \text { eqd } f(i i) \Leftrightarrow d(u, x)=d(u, y)=d(v, x)=d(v, y) \tag{3}
\end{equation*}
$$

The ops strips can be either cycles (if they start/end in the edges $e_{\text {even }}$ of the same even face $f_{\text {even }}$) or paths (if they start/end in the edges $e_{\text {odd }}$ of the same or different odd faces $f_{\text {odd }}$).

PROPOSITION 6. Let G be a planar graph representing a polyhedron with the odd faces insulated from each other. The set of ops strips $\mathrm{S}(\mathrm{G})=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$. contains a number of $o p$-paths opp which is exactly half of the number of odd face edges $e_{\text {odd }} / 2$.

Proof of Proposition 6 was given in [50].
COROLLARY 7. In a planar bipartite graph, representing a polyhedron, all ops strips are cycles.

The ops is maximum possible, irrespective of the starting edge. The choice is about the maximum size of face/ring searched, and mode of face/ring counting, which will decide the length of the strip.

6. OMEGA POLYNOMIAL

Let G be an arbitrary connected graph and $s_{1}, s_{2}, . ., s_{k}$ be its $o p$-strips. Then ops form a partition of $E(G)$ and the Ω-polynomial [51] of G is defined as

$$
\begin{equation*}
\Omega(x)=\sum_{i=1}^{k} x^{\left|s_{i}\right|} \tag{4}
\end{equation*}
$$

Let now consider the set of edges co-distant to edge e in $G, c(e)$. A Θ-polynomial [43], counting the edges equidistant to every edge e, is written as

$$
\begin{equation*}
\Theta(x)=\sum_{e \in E(G)} x^{|c(e)|} \tag{5}
\end{equation*}
$$

Suppose now G is a co-graph, when $\left|c_{k}\right|=\left|s_{k}\right|$, then [41]

$$
\begin{equation*}
\Theta(x)=\sum_{e \in E(G)} x^{|c(e)|}=\sum_{i=1}^{k} \sum_{e \in S_{i}} x^{|c(e)|}=\sum_{e}|c(e)| x^{|c(e)|}=\sum_{i=1}^{k}\left|s_{i}\right| x^{\left|s_{i}\right|} \tag{6}
\end{equation*}
$$

Let's simplify a little the above notations: note by $m(s)$ or simply m the number of $o p s$ of length $s=\left|s_{k}\right|$ and re-write the Omega polynomial as [1,52,53,54]:

$$
\begin{equation*}
\Omega(x)=\sum_{s} m \cdot x^{s} \tag{7}
\end{equation*}
$$

Next we can write Theta and other two related polynomials, as follows:

$$
\begin{align*}
& \Theta(x)=\sum_{s} m s \cdot x^{s} \tag{8}\\
& \Pi(x)=\sum_{s} m s \cdot x^{e-s} \tag{9}\\
& S d(x)=\sum_{s} m \cdot x^{e-s} \tag{10}
\end{align*}
$$

The polynomial $\Theta(x)$ counts equidistant edges while $\Pi(x)$ non-equidistant edges. The Sadhana polynomial, proposed by Ashrafi et al. [52] in relation with the Sadhana index
$S d(G)$ proposed by Khadikar et al. [53], counts non-opposite edges in G. Their first derivative (in $x=1$) provides single number topological descriptors also termed topological indices [1]:

$$
\begin{align*}
& \Omega^{\prime}(1)=\sum_{s} m \cdot s=e=|E(G)| \tag{11}\\
& \Theta^{\prime}(1)=\sum_{s} m \cdot s^{2}=\theta(G) \tag{12}\\
& \Pi^{\prime}(1)=\sum_{s} m s \cdot(e-s)=\Pi(G) \tag{13}\\
& S d^{\prime}(1)=\sum_{s} m \cdot(e-s)=e(S d(1)-1)=\operatorname{Sd}(G) \tag{14}
\end{align*}
$$

Note $\operatorname{Sd}(1)=\Omega(1)$, then the first derivative given in (14) is the product of the number of edges $e=|E(G)|$ and the number of strips $\Omega(1)$ less one.

On Omega polynomial, the Cluj-Ilmenau index [49] $C I=C I(G)$ was defined:

$$
\begin{equation*}
C I(G)=\left\{\left[\Omega^{\prime}(1)\right]^{2}-\left[\Omega^{\prime}(1)+\Omega^{\prime \prime}(1)\right]\right\} \tag{15}
\end{equation*}
$$

A polynomial related to $\Pi(x)$ was defined by Ashrafi [53] as:

$$
\begin{equation*}
P I_{e}(x)=\sum_{e \in E(G)} x^{n(e, u)+n(e, v)} \tag{16}
\end{equation*}
$$

where $n(e, u)$ is the number of edges lying closer to the vertex u than to the v vertex. Its first derivative (in $x=1$) provides the $P I_{e}(G)$ index proposed by Khadikar $[55,56]$.

PROPOSITION 8. In any bipartite graph, $\Pi(G)=P I_{e}(G)$.
Proof. Ashrafi defined the equidistance of edges by considering the distance from a vertex z to the edge $e=u v$ as the minimum distance between the given point and the two endnoints of that edge [49,56]:

$$
\begin{equation*}
d(z, e)=\min \{d(z, u), d(z, v)\} \tag{17}
\end{equation*}
$$

Then, for two edges $e=(u v)$ and $f=(x y)$ of G,

$$
\begin{equation*}
\text { e eqd } f(i i i) \Leftrightarrow d(x, e)=d(y, e) \text { and } d(u, f)=d(v, f) \tag{18}
\end{equation*}
$$

In bipartite graphs, relations (1) \& (3) superimpose over relations (17) \&(18), then in such graphs, $\Pi(G)=P I_{e}(G)$. In general graphs, this is, however, not true.

PROPOSITION 9. In co-graphs, the equality $C I(G)=\Pi(G)$ holds.
Proof. By definition, one calculates:

$$
\begin{align*}
& C I(G)=\left(\sum_{i=1}^{k}\left|s_{i}\right|\right)^{2}-\left(\sum_{i=1}^{k}\left|s_{i}\right|+\sum_{i=1}^{k}\left|s_{i}\right|\left(\left|s_{i}\right|-1\right)\right) \tag{19}\\
&=|E(G)|^{2}-\sum_{i=1}^{k}\left(\left|s_{i}\right|\right)^{2}=\Pi^{\prime}(G, 1)=\Pi(G)
\end{align*}
$$

Relation (19) is valid only assuming $\left|c_{k}\right|=\left|s_{k}\right|, k=1,2, \ldots$, thus providing the same value for the exponents of Omega and Theta polynomials; this is precisely achieved in cographs. In general graphs, however $\left|s_{i}\right| \neq\left|c_{k}\right|$ and as a consequence, $C I(G) \neq \Pi(G)$ [1].

In partial cubes, which are also bipartite, the above equality can be expanded to the triple one

$$
\begin{equation*}
C I(G)=\Pi(G)=P I_{e}(G) \tag{20}
\end{equation*}
$$

a relation which is not obeyed in all co-graphs (e.g. in non-bipartite ones).
There is also a vertex-version of PI index, defined as: ${ }^{57,58}$

$$
\begin{equation*}
P I_{v}(G)=P I_{v}^{\prime}(1)=\sum_{e=u v} n_{u, v}+n_{v, u}=|V| \cdot|E|-\sum_{e=u v} m_{u, v} \tag{21}
\end{equation*}
$$

where $n_{u, v}, n_{v, u}$ count the non-equidistant vertices with respect to the endpoints of the edge $e=(u, v)$ while $m(u, v)$ is the number of equidistant vertices $v s u$ and v. However, it is known that, in bipartite graphs, there are no equidistant vertices vs. any edge, so that the last term in (21) will miss. The value of $P I_{v}(G)$ is thus maximal in bipartite graphs, among all graphs on the same number of vertices; this result can be used as a criterion for checking whether the graph is bipartite [1].

7. Topology of diamond D_{6} and Lonsdaleite Le ${ }_{6}$ Nets

Topology of the classical diamond D_{6} and Lonsdaleite L_{6} are listed in Table 1. Along with Omega polynomial, formulas to calculate the number of atoms in a cuboid of dimensions (k, k, k) are given. In the above, k is the number of repeating units along the edge of such a cubic domain. One can see that the ratio $\mathrm{C}\left(\mathrm{sp}^{3}\right) / \mathrm{v}(\mathrm{G})$ approaches the unity; this means that in a large enough net almost all atoms are tetra-connected, a basic condition for a structure to be diamondoid. Examples of calculus are given in Table 2.

8. TOPOLOGY OF DIAMOND D_{5} AND LONSDALEITE L_{5} NETS

Topology of diamond D_{5} and lonsdaleite L_{5}, in a cubic (k, k, k) domain, is presented in Tables 3 to 8: formula to calculate Omega polynomial, number of atoms, number of rings and the limits (at infinity) for the ratio of $\mathrm{sp}^{3} \mathrm{C}$ atoms over total number of atoms and also the ratio $\mathrm{R}[5]$ over the total number of rings (Table 3). Numerical examples are given.

Table 1. Omega polynomial in Diamond D_{6} and Lonsdaleite L_{6} nets, function of the number of repeating units along the edge of a cubic (k, k, k) domain.

	Network
A	Omega(D_{6}) $\mathrm{R}[6]$
1	$\Omega\left(D_{6} k_{\text {odd }}, x\right)=\left(\sum_{i-1}^{k} 2 x^{\frac{(i+1)(i+2)}{2}}\right)+\left(\sum_{i-1}^{(k-1) / 2} 2 x^{\frac{(k+1)(k+2)}{2}+\frac{k \times k-1}{4}-i(i-1)}\right)+3 k x^{(k+1)(k+1)}$
2	$\Omega\left(D_{6-} k_{\text {even }}, x\right)=\left(\sum_{i-1}^{k} 2 x^{\frac{(i+1)(i+2)}{2}}\right)+\left(\sum_{i-1}^{k / 2} 2 x^{\frac{(k+1)(k+2)}{2}+\frac{k k k}{4}-(i-1)(i-1)}\right)-x^{\frac{(k+1)(k+2)}{2}+\frac{k \times k}{4}}+3 k x^{(k+1)(k+1)}$
3	$\Omega^{\prime}(1)=e(G)=-1+6 k+9 k^{2}+4 k^{3}$
4	$C I(G)=2-187 k / 10-k^{2} / 4+305 k^{3} / 4+457 k^{4} / 4+1369 k^{5} / 20+16 k^{6}$
5	$v(G)=6 k+6 k^{2}+2 k^{3}$
6	Atoms $\left(s p^{3}\right)=-2+6 k+2 k^{3}$
7	$R[6]=3 k^{2}+4 k^{3}$
8	$\lim _{k \rightarrow \infty}\left[\frac{\operatorname{Atoms}\left(s p^{3}\right)}{v(G)}=\frac{-2+6 k+2 k^{3}}{6 k+6 k^{2}+2 k^{3}}\right]=1$
B	Omega(L_{6}); R[6]
1	$\Omega\left(L_{6}, x\right)=k \cdot x^{k(k+2)}+x^{(k+1)\left(3 k^{2}+4 k-1\right)}$
2	$\Omega^{\prime}(1)=e(G)=-1+3 k+9 k^{2}+4 k^{3}$
3	$C I(G)=k^{2}(k+2)\left(7 k^{3}+15 k^{2}+4 k-2\right)$
4	$v(G)=2 k(k+1)(k+2)=4 k+6 k^{2}+2 k^{3}$
5	$\operatorname{Atoms}(s p 3)=2(k-1) \cdot k \cdot(k+1)=2 k\left(k^{2}-1\right)$
6	$R[6]=-2 k+3 k^{2}+4 k^{3}$
7	$\lim _{k \rightarrow \infty}\left[\frac{\operatorname{Atoms}\left(s p^{3}\right)}{v(G)}=\frac{2 k\left(k^{2}-1\right)}{4 k+6 k^{2}+2 k^{3}}\right]=1$

9. TOPOLOGY OF BORON NITRDIDE NETS

Topology of boron nitride nets is treated similarly to that of D_{5} and L_{5} and is presented in Tables 9 to 18: formulas to calculate Omega polynomial, number of atoms, number of rings and the limits (at infinity) for the ratio of $\mathrm{sp}^{3} \mathrm{C}$ atoms over total number of atoms are given, along with numerical examples. Formulas for Omega polynomial are taken as basis to calculate the above four related polynomials in these bipartite networks. Formulas are derived here not only for a cubic domain (in case of $\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}$) but also for a dual of cuboctahedron domain (case of COD_B ${ }_{12} \mathrm{~N}_{12}$) and for an octahedral domain (case of Oct_B ${ }_{12} \mathrm{~N}_{12}$).

Table 2. Examples, Omega polynomial in Diamond D_{6} and Lonsdaleite L_{6} nets.

k	Polynomial (Net)	Atoms	sp^{3} Atoms $(\%)$	Bonds	$\mathrm{CI}(\mathrm{G})$	$\mathrm{R}[6]$
	Omega($\left.\mathrm{D}_{6}\right) ; \mathrm{R}[6]$					
1	$2 \mathrm{x}^{3}+3 \mathrm{x}^{4}($ Diamantane $)$	14	-	18	258	7
2	$2 \mathrm{x}^{3}+2 \mathrm{x}^{6}+1 \mathrm{x}^{7}+6 \mathrm{x}^{9}$	52	$26(50.00)$	79	5616	44
3	$2 \mathrm{x}^{3}+2 \mathrm{x}^{6}+2 \mathrm{x}^{10}+2 \mathrm{x}^{12}+9 \mathrm{x}^{16}$	126	$70(55.56)$	206	39554	135
4	$2 \mathrm{x}^{3}+2 \mathrm{x}^{6}+2 \mathrm{x}^{10}+2 \mathrm{x}^{15}+2 \mathrm{x}^{18}+1 \mathrm{x}^{19}+12 \mathrm{x}^{25}$	248	$150(60.48)$	423	169680	304
5	$2 \mathrm{x}^{3}+2 \mathrm{x}^{6}+2 \mathrm{x}^{10}+2 \mathrm{x}^{15}+2 \mathrm{x}^{21}+2 \mathrm{x}^{25}+2 \mathrm{x}^{27}+15 \mathrm{x}^{36}$	430	$278(64.65)$	754	544746	575
6	$2 \mathrm{x}^{3}+2 \mathrm{x}^{6}+2 \mathrm{x}^{10}+2 \mathrm{x}^{15}+\mathrm{x}^{21}+4 \mathrm{x}^{28}+2 \mathrm{x}^{33}+2 \mathrm{x}^{36}+$					
	$1 \mathrm{x}^{37}+18 \mathrm{x}^{49}$	684	$466(68.13)$	1223	1443182	972
	Omega(L$) ; \mathrm{R}[6]$					
1	$1 \mathrm{x}^{3}+\mathrm{x}^{12}$	12	-	15	72	5
2	$2 \mathrm{x}^{8}+\mathrm{x}^{57}$	48	$12(25.00)$	73	1952	40
3	$3 \mathrm{x}^{15}+\mathrm{x}^{152}$	120	$48(40.00)$	197	15030	129
4	$4 \mathrm{x}^{24}+\mathrm{x}^{315}$	240	$120(50.00)$	411	67392	296
5	$5 \mathrm{x}^{55}+\mathrm{x}^{564}$	420	$240(57.14)$	739	221900	565
6	$6 \mathrm{x}^{48}+\mathrm{x}^{917}$	672	$420(62.50)$	1205	597312	960

Table 3. Omega polynomial in Diamond $D_{5} 20$ net function of $k=$ no. ada_20 units along the edge of a cubic (k, k, k) domain.

	Omega(D_(D_20a); R[6]: Formulas
1	$\Omega\left(\mathrm{D}_{5} _20 a, x\right)=\left(32-54 k+36 k^{2}+44 k^{3}\right) \cdot x+\left(-3+18 k-27 k^{2}+12 k^{3}\right) \cdot x^{2}$
2	$\Omega^{\prime}(1)=e(G)=-38-18 k-18 k^{2}+68 k^{3}$
3	$C I(G)=1488+1350 k+1764 k^{2}-4612 k^{3}-2124 k^{4}-2448 k^{5}+4624 k^{6}$
4	$v\left(\mathrm{D}_{5} _20 a\right)=-22-12 k+34 k^{3}$
5	Atoms $\left(s p^{3}\right)=-10-36 k^{2}+34 k^{3}$
6	$R[5]=-18-6 k-18 k^{2}+36 k^{3}$
7	$R[6]=-1+6 k-9 k^{2}+4 k^{3}$
8	$R[5]+R[6]=-19-27 k^{2}+40 k^{3}$
9	$\lim _{k \rightarrow \infty} \frac{R[5]}{R[6]}=9 ; \lim _{k \rightarrow \infty} \frac{R[5]}{R[5]+R[6]}=9 / 10$
10	$\lim _{k \rightarrow \infty}\left[\frac{A t o m s\left(s p^{3}\right)}{v(G)}=\frac{-10-36 k^{2}+34 k^{3}}{-22-12 k+34 k^{3}}=\frac{-\frac{10}{k^{3}}-\frac{36}{k}+34}{-\frac{22}{k^{3}}-\frac{12}{k^{2}}+34}\right]=1$

Table 4. Examples, Omega polynomial in $D_{5} _20$ net.

k	Omega(D S_20a); $\mathrm{R}[6]$	Atoms	sp 3 Atoms (\%)	Bonds	CI	$\mathrm{R}[5]$	$\mathrm{R}[6]$
2	$356 \mathrm{x}^{1}+21 \mathrm{x}^{2}$	226	$118(52.21)$	398	157964	186	7
3	$1318 \mathrm{x}^{1}+132 \mathrm{x}^{2}$	860	$584(67.91)$	1582	2500878	774	44
4	$3144 \mathrm{x}^{1}+405 \mathrm{x}^{2}$	2106	$1590(75.50)$	3954	15629352	1974	135
5	$6098 \mathrm{x}^{1}+912 \mathrm{x}^{2}$	4168	$3340(80.13)$	7922	62748338	4002	304
6	$10444 \mathrm{x}^{1}+1725 \mathrm{x}^{2}$	7250	$6038(83.28)$	13894	193025892	7074	575
7	$16446 \mathrm{x}^{1}+2916 \mathrm{x}^{2}$	11556	$9888(85.57)$	22278	496281174	11406	972

Table 5. Omega polynomial in $\mathrm{D}_{5} 28$ co-net function of $k=$ no. ada_ 20 units along the edge of a cubic (k, k, k) domain.

	Omega (D_{5} 28a); R[6]; Formulas
1	$\Omega\left(\mathrm{D}_{5}{ }^{\text {- }} 28 a, x\right)=\left(-26-12 k-6 k^{2}+44 k^{3}\right) \cdot x+\left(-18+9 k^{2}+12 k^{3}\right) \cdot x^{2}$
2	$\Omega^{\prime}(1)=e(G)=-62-12 k+12 k^{2}+68 k^{3}$
3	$C I(G)=3942+1500 k-1374 k^{2}-8812 k^{3}-1488 k^{4}+1632 k^{5}+4624 k^{6}$
4	$v\left(\mathrm{D}_{5}-28 a\right)=-40-6 k+18 k^{2}+34 k^{3}$
5	Atoms $\left(s p^{3}\right)=-4-6 k-30 k^{2}+34 k^{3}$
6	$R[5]=-18-18 k^{2}+36 k^{3}$
7	$R[6]=-1+6 k-9 k^{2}+4 k^{3}$
8	$\lim _{k \rightarrow \infty}\left[\frac{\operatorname{Atoms}\left(s p^{3}\right)}{v(G)}=\frac{-4-6 k-30 k^{2}+34 k^{3}}{-40-6 k+18 k^{2}+34 k^{3}}\right]=1$

Table 6. Examples, Omega polynomial in $\mathrm{D}_{5} 28$ co-net.

k	Omega($\left.\mathrm{D}_{5} 28 \mathrm{a}\right) ; \mathrm{R}[6]$	Atoms	sp^{3} Atoms (\%)	Bonds	CI	$\mathrm{R}[5]$	$\mathrm{R}[6]$
2	$278 \mathrm{x}^{1}+114 \mathrm{x}^{2}$	292	$136(46.58)$	506	255302	198	38
3	$1072 \mathrm{x}^{1}+387 \mathrm{x}^{2}$	1022	$626(61.25)$	1846	3405096	792	129
4	$2646 \mathrm{x}^{1}+894 \mathrm{x}^{2}$	2400	$1668(69.50)$	4434	19654134	1998	298
5	$5264 \mathrm{x}^{1}+1707 \mathrm{x}^{2}$	4630	$3466(74.86)$	8678	75295592	4032	569
6	$9190 \mathrm{x}^{1}+2898 \mathrm{x}^{2}$	7916	$6224(78.63)$	14986	224559414	7110	966
7	$14688 \mathrm{x}^{1}+4539 \mathrm{x}^{2}$	12462	$10146(81.41)$	23766	564789912	11448	1513

Table 7. Omega polynomial in Lonsdaleite-like $\mathrm{L}_{5} 28$ and $\mathrm{L}_{5} 20$ nets function of $k=$ no. repeating units along the edge of a cubic (k, k, k) domain.

	Network
A	Omega $\left(\mathrm{L}_{5} 28\right) ; \mathrm{R}[6]$
1	$\Omega\left(\mathrm{~L}_{5} _28, x\right)=2 k\left(-1+73 k+44 k^{2}\right) \cdot x+3 k\left(4+21 k+8 k^{2}\right) \cdot x^{2}$
2	$\Omega^{\prime}(1)=e(G)=2 k\left(11+136 k+68 k^{2}\right)$
3	$C I(G)=2 \mathrm{k}\left(-23+43 k+5892 k^{2}+39984 k^{3}+36992 k^{4}+9248 k^{5}\right)$
4	$v\left(\mathrm{~L}_{5-28}\right)=2 k\left(12+79 k+34 k^{2}\right)$
5	Atoms $\left(s p^{3}\right)=2 k\left(-14+35 k+34 k^{2}\right)$
6	$R[5]=1-6 k+98 k^{2}+72 k^{3}$
7	$R[6]=k\left(4+21 k+8 k^{2}\right)$
8	$\lim _{k \rightarrow \infty}\left[\frac{A t o m s\left(s p^{3}\right)}{v(G)}=\frac{2 k\left(-14+35 k+34 k^{2}\right)}{2 k\left(12+79 k+34 k^{2}\right)}\right]=1$
B	Omega $\left(\mathrm{L}_{5} 20\right) ; \mathrm{R}[6]$
1	$\Omega\left(L_{5} _20, x\right)=\left(-2-69 k+36 k^{2}+44 k^{3}\right) \cdot x+3(k-1)^{2}(4 k-1) \cdot x^{2}$
2	$\Omega '(1)=e(G)=-8-33 k-18 k^{2}+68 k^{3}$
3	$C I(G)=78+525 k+1449 k^{2}+8 k^{3}-4164 k^{4}-2448 k^{5}+4624 k^{6}$
4	$v\left(L_{5}-28\right)=-6-20 k+34 k^{3}$
5	$A t o m s\left(s p^{3}\right)=2-6 k-36 k^{2}+34 k^{3}$
6	$R[5]=-2-14 k-18 k^{2}+36 k^{3}$
7	$R[6]=(k-1)^{2}(4 k-1)$
8	$\lim _{k \rightarrow \infty}\left[\frac{A t o m s\left(s p^{3}\right)}{v(G)}=\frac{2-6 k-36 k^{2}+34 k^{3}}{-6-20 k+34 k^{3}}\right]=1$

10. Conclusions

Hyperdiamonds are structures having a significant amount of sp^{3} carbon atoms and covalent forces to join the consisting fullerenes in crystalline forms, related to the classical diamond. Design of several hypothetical crystal networks was performed by using original software programs CVNET and NANO-STUDIO, developed at TOPO GROUP CLUJ. The
topology of the networks is described in terms of the net parameters and several counting polynomials, calculated by our NANO-STUDIO, OMEGA and PI software programs.

Table 8. Examples, Omega polynomial in L_{5} _ 28 and $L_{5} 20$ nets.

k	Polynomial (Net)	Atoms	sp 3 Atoms (\%)	Bonds	$\mathrm{CI}(\mathrm{G})$	$\mathrm{R}[5]$	$\mathrm{R}[6]$
A	Omega(L_2_28); R[6]						
1	$232 \mathrm{x}+99 \mathrm{x}^{2}$	250	$110(44.00)$	430	184272	165	33
2	$1284 \mathrm{x}+468 \mathrm{x}^{2}$	1224	$768(62.75)$	2220	4925244	957	156
3	$3684 \mathrm{x}+1251 \mathrm{x}^{2}$	3330	$2382(71.53)$	6186	38257908	2809	417
4	$7960 \mathrm{x}+2592 \mathrm{x}^{2}$	6976	$5360(76.83)$	13144	172746408	6153	864
5	$14640 \mathrm{x}+4635 \mathrm{x}^{2}$	12570	$10110(80.43)$	23910	571654920	11421	1545
6	$24252 \mathrm{x}+7524 \mathrm{x}^{2}$	20520	$17040(83.04)$	39300	1544435652	19045	2508
B	Omega(L,20); R[6]						
2	$356 \mathrm{x}+21 \mathrm{x}^{2}$	226	$118(52.21)$	398	157964	186	7
3	$1303 \mathrm{x}+132 \mathrm{x}^{2}$	852	$578(67.84)$	1567	2453658	766	44
4	$3114 \mathrm{x}+405 \mathrm{x}^{2}$	2090	$1578(75.50)$	3924	15393042	1958	135
5	$6053 \mathrm{x}+912 \mathrm{x}^{2}$	4144	$3322(80.16)$	7877	62037428	3978	304
6	$10384 \mathrm{x}+1725 \mathrm{x}^{2}$	7218	$6014(83.32)$	13834	191362272	7042	575

Table 9. Omega polynomial in $\mathrm{c}_{_} \mathrm{B}_{12} \mathrm{~N}_{12}$ net, (designed by $L e\left(\mathrm{C}_{\mathrm{n}}\right)$ _all) function of $k=$ no. repeating units along the edge of a cubic (k, k, k) domain.

	Omega ($\left.\mathbf{c}_{-} \mathbf{B}_{12} \mathbf{N}_{12}\right) ;$ R[4,6]; Formulas				
1	$\Omega\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=6 \cdot x^{k(4 k+2)}+12 \sum_{i=1}^{k-1} x^{i(4 k+2)}$	$	$	2	$\Omega^{\prime}(1)=e(G)=12 k^{2}(1+2 k)$
:---	:---				
3	$C I(G)=-8 k-32 k^{2}-48 k^{3}+80 k^{4}+512 k^{5}+576 k^{6}$ $=-8 k(1+2 k)^{2}\left(1+2 k^{2}-18 k^{3}\right)$				
4	$v\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}\right)=4 k^{2}[6+3(-1+k)]$				
5	Atoms $\left(s p^{3}\right)=12 k^{2}(-1+k)$				
6	$R[4]=3\left(1-k+2 k^{2}\right)$				
7	$R[6]=8 k^{3}$				
8	$m\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}\right)=k^{3} ; m=$ no. monomer				
9	$\lim _{k \rightarrow \infty}\left[\frac{A t o m s\left(s p^{3}\right)}{v(G)}=\frac{12 k^{2}(-1+k)}{4 k^{2}[6+3(-1+k)]}\right]=1$				

Table 10. Examples, Omega polynomial in $\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}$ cubic (k, k, k) net.

k	Omega(c_B $\left.\mathrm{B}_{12} \mathrm{~N}_{12}\right) \mathrm{R}[4,6]$	Atoms	sp ${ }^{3}$ Atoms (\%)	Bonds	CI(G)	R[4]	$\mathrm{R}[6]$
1	$6 \mathrm{x}^{6}$	24	$110(44.00)$	36	1080	6	8
2	$12 \mathrm{x}^{10}+6 \mathrm{x}^{20}$	144	$768(62.75)$	240	54000	42	64
3	$12 \mathrm{x}^{14}+12 \mathrm{x}^{28}+6 \mathrm{x}^{42}$	432	$2382(71.53)$	756	549192	144	216
4	$12 \mathrm{x}^{18}+12 \mathrm{x}^{36}+12 \mathrm{x}^{54}+6 \mathrm{x}^{72}$	960	$5360(76.83)$	1728	2900448	348	512
5	$12 \mathrm{x}^{22}+12 \mathrm{x}^{44}+12 \mathrm{x}^{66}+12 \mathrm{x}^{88}+6 \mathrm{x}^{110}$	1800	$10110(80.43)$	3300	10643160	690	1000
6	$12^{26}+12 \mathrm{x}^{52}+12 \mathrm{x}^{78}+12 \mathrm{x}^{104}+12 \mathrm{x}^{130}+6 \mathrm{x}^{156}$	3024	$17040(83.04)$	5616	30947280	1206	1728

Table 11. Theta $\Theta, \operatorname{Pi} \Pi$, Sadhana $S d$ and PI_{v} polynomials in $\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}$ cubic (k, k, k) net.

	Formulas
1	$v\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}\right)=4 k^{2}[6+3(-1+k)]$
2	$e(G)=12 k^{2}(1+2 k)$
3	$\Theta\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=6 \cdot k(4 k+2) \cdot x^{k(4 k+2)}+12 \sum_{i=1}^{k-1} i(4 k+2) \cdot x^{i(4 k+2)}$
4	$\Theta^{\prime}(1)=6 \cdot[k(4 k+2)]^{2}+12 \sum_{i=1}^{k-1}[i(4 k+2)]^{2}=8 k\left(2 k^{2}+1\right)(2 k+1)^{2}$
5	$\Pi\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=6 \cdot k(4 k+2) \cdot x^{12 k^{2}(2 k+1)-k(4 k+2)}+12 \sum_{i=1}^{k-1} i(4 k+2) \cdot x^{12 k^{2}(2 k+1)-i(4 k+2)}$
6	$\Pi^{\prime}(1)=6 \cdot[k(4 k+2)]\left[12 k^{2}(2 k+1)-k(4 k+2)\right]+$ $12 \sum_{i=1}^{k-1}[i(4 k+2)]\left[12 k^{2}(2 k+1)-i(4 k+2)\right]=8 k\left(18 k^{3}-2 k^{2}-1\right)(2 k+1)^{2}$
7	$S d\left(\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=6 \cdot x^{12 k^{2}(2 k+1)-k(4 k+2)}+12 \sum_{i=1}^{k-1} x^{12 k^{2}(2 k+1)-i(4 k+2)}$
8	$S d^{\prime}(1)=6 \cdot\left[12 k^{2}(2 k+1)-k(4 k+2)\right]+$ $12 \sum_{i=1}^{k-1}\left[12 k^{2}(2 k+1)-i(4 k+2)\right]=12 k^{2}(12 k-7)(2 k+1)$
9	$P I_{v}=e \cdot x^{v}$
10	$P I_{v}^{\prime}(1)=e \cdot v=\left(12 k^{2}\right)^{2}(2 k+1)(k+1)=144 k^{4}+432 k^{5}+288 k^{6}$

Table 12. Examples, Theta Θ, $\mathrm{Pi} \Pi$, Sadhana Sd and PI_{v} indices in $\mathrm{c}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}$ cubic (k, k, k) net.

k	$\Theta^{\prime}(1)$	$\Pi^{\prime}(1)$	$\mathrm{Sd}^{{fafc716a8-38f1-4a1c-aa40-d3a2496ec6d4}}(1)$	$\Omega^{\prime}(1)=e(G)$	$v(G)$	
4	85536	2900448	70848	1658880	1728	960
5	246840	10643160	174900	5940000	3300	1800
6	592176	30947280	365040	16982784	5616	3024

Table 13. Omega polynomial in $\mathrm{B}_{12} \mathrm{~N}_{12}$ net function of $k=$ no. repeating units along the edge of a $\mathrm{Du}(\operatorname{Med}(\mathrm{Cube}))$ COD ($k _$all) domain.

	Omega(COD_B $\left.\mathbf{B}_{12} \mathbf{N}_{12}\right) ; \mathbf{R}[4,6] ;$ Formulas
1	$\Omega\left(\mathrm{COD}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=12 \sum_{i=0}^{k-2} x^{[2 k(k+2)+4 k i]}+6 x^{6 k^{2}}$
2	$\Omega \Omega^{\prime}(1)=e(G)=12 k^{2}(4 k-1)$
3	$C I(G)=8 k^{3}(2 k-1)\left(144 k^{2}-13 k+4\right)=2304 k^{6}-1360 k^{5}+168 k^{4}-32 k^{3}$
4	$v\left(\right.$ COD_B $\left._{12} \mathrm{~N}_{12}\right)=24 k^{3}$
5	Atoms $(s p 3)=24 k^{2}(k-1)=24 k^{3}-24 k^{2}$
6	$R[4]=-6 k^{2}+12 k^{3}$
7	$R[6]=4 k-12 k^{2}+16 k^{3}$
8	$\lim _{k \rightarrow \infty}\left[\frac{A t o m s\left(s p^{3}\right)}{v(G)}=\frac{24 k^{2}(k-1)}{24 k^{3}}\right]=1$

Table 14. Examples, Omega polynomial in $\mathrm{COD}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}(k$ all $)$ net.

k	Omega(COD_B $\left.{ }_{12} \mathrm{~N}_{12}\right) \mathrm{R}[4,6]$	Atoms	sp^{3} Atoms (\%)	Bonds	$\mathrm{CI}(\mathrm{G})$	$\mathrm{R}[4]$	$\mathrm{R}[6]$
2	$12 \mathrm{x}^{16}+6 \mathrm{x}^{24}$	192	96 (50.00)	336	106368	72	88
3	$12 \mathrm{x}^{30}+12 \mathrm{x}^{42}+6 \mathrm{x}^{54}$	648	432 (66.67)	1188	1361880	270	336
4	$12 \mathrm{x}^{48}+12 \mathrm{x}^{64}+12 \mathrm{x}^{80}+6 \mathrm{x}^{96}$	1536	$1152(75.00)$	2880	8085504	672	848
5	$12 \mathrm{x}^{70}+12 \mathrm{x}^{90}+12 \mathrm{x}^{110}+12 \mathrm{x}^{130}+6 \mathrm{x}^{150}$	3000	$2400(80.00)$	5700	31851000	1350	1720
6	$12 \mathrm{x}^{96}+12 \mathrm{x}^{120}+12 \mathrm{x}^{144}+12 \mathrm{x}^{168}+12 \mathrm{x}^{192}+6 \mathrm{x}^{216}$	5184	$4320(83.33)$	9936	97130880	2376	3048

Table 15. Theta, Pi , Sadhana and PI_{v} polynomials in $\mathrm{COD}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}\left(k _\right.$all $)$net.

	Formulas
1	$v\left(\right.$ COD_ $\left.\mathrm{B}_{12} \mathrm{~N}_{12}\right)=24 k^{3}$
2	$\Omega^{\prime}(1)=e(G)=12 k^{2}(4 k-1)$
3	$\Theta\left(\mathrm{COD}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=12 \sum_{i=0}^{k-2}[2 k(k+2)+4 k i] \cdot x^{[2 k(k+2)+4 k i]}+36 k^{2} x^{6 k^{2}}$
4	$\Theta^{\prime}(1)=12 \sum_{i=0}^{k-2}[2 k(k+2)+4 k i]^{2}+6^{3} k^{4}=32 k^{3}-24 k^{4}+208 k^{5}$
5	$\Pi\left(\mathrm{COD}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=12 \sum_{i=0}^{k-2}[2 k(k+2)+4 k i] \cdot x^{12 k^{2}(4 k-1)-[2 k(k+2)+4 k i]}+36 k^{2} x^{12 k^{2}(4 k-1)-6 k^{2}}$
6	$\begin{aligned} \Pi^{\prime}(1)= & 12 \sum_{i=0}^{k-2}[2 k(k+2)+4 k i] \cdot\left[12 k^{2}(4 k-1)-[2 k(k+2)+4 k i]\right]+36 k^{2}\left[12 k^{2}(4 k-1)-6 k^{2}\right] \\ & =-32 k^{3}+168 k^{4}-1360 k^{5}+2304 k^{6} \end{aligned}$
7	$S d\left(\mathrm{COD}_{-} \mathrm{B}_{12} \mathrm{~N}_{12}, x\right)=12 \sum_{i=0}^{k-2} x^{12 k^{2}(4 k-1)-[2 k(k+2)+4 k i]}+6 x^{12 k^{2}(4 k-1)-6 k^{2}}$
8	$\begin{aligned} S d(1) & =12 \sum_{i=0}^{k-2} 12 k^{2}(4 k-1)-[2 k(k+2)+4 k i]+6\left[12 k^{2}(4 k-1)-6 k^{2}\right] \\ & =12 k^{2}(4 k-1)(12 k-7)=84 k^{2}-480 k^{3}+576 k^{4} \end{aligned}$
9	$P I_{v}=e \cdot x^{v}$
10	$P I_{v}^{\prime}(1)=e \cdot v=288 k^{5}(4 k-1)$

Table 16. Examples, Theta, Pi , Sadhana and PI_{v} polynomials in $\mathrm{COD} \mathrm{B}_{12} \mathrm{~N}_{12}\left(k _\right.$all $)$net.

k	$\Theta^{\prime}(1)$	$\Pi^{\prime}(1)$	$\mathrm{Sd}^{{f66259936-22e0-4894-9ac4-94237b60da6a}}(1)$	$\Omega^{\prime}(1)=e(G)$	$v(G)$	
4	208896	8085504	118080	4423680	2880	1536
5	639000	31851000	302100	17100000	5700	3000
6	1593216	97130880	645840	51508224	9936	5184

Table 17. Omega polynomial in $\mathrm{B}_{12} \mathrm{~N}_{12}$ net function of $k=$ no. repeating units along the edge of an octahedral Oct (k _all) domain.

	Omega(Oct_B $\left.\mathbf{B}_{12} \mathbf{N}_{12}\right) ; \mathbf{R}[\mathbf{4}, \mathbf{6}] ;$ Formulas
1	$\Omega\left(\mathrm{Oct}_{12} \mathrm{~B}_{12} \mathrm{~N}_{12}, x, k_{\text {even }}\right)=\sum_{i=1}^{k-1} 4 x^{2 i(i+2)}+\sum_{i=1}^{k / 2} 8 x^{1+2 i-2 i^{2}+3 k(k+2) / 2}+2 x^{2 k(k+2)}$
2	$\Omega\left(\right.$ Oct_ $\left._{12} \mathrm{~N}_{12}, x, k_{\text {odd }}\right)=\sum_{i=1}^{k-1} 4 x^{2 i(i+2)}+\sum_{i=1}^{(k-1) / 2} 8 x^{3 / 2-2 i^{2}+3 k(k+2) / 2}+4 x^{3 / 2+3 k(k+2) / 2}+2 x^{2 k(k+2)}$
3	$\Omega^{\prime}(1)=e(G)=4 k(k+2)(2 k+1)$
4	$C I(G)=64 k^{6}+1548 k^{5} / 5+480 k^{4}+240 k^{3}+8 k^{2}-108 k / 5$
5	$v\left(\right.$ Oct_ $\left._{12} \mathrm{~N}_{12}\right)=8 k+12 k^{2}+4 k^{3}$
6	Atoms $\left(s p^{3}\right)=-8 k+4 k^{2}+4 k^{3}$
7	$R[4]=1-k+4 k^{2}+2 k^{3}$
8	$R[6]=4 k / 3+4 k^{2}+8 k^{3} / 3$
9	$\lim _{k \rightarrow \infty}\left[\frac{A t o m s\left(s p^{3}\right)}{v(G)}=\frac{-8 k+4 k^{2}+4 k^{3}}{8 k+12 k^{2}+4 k^{3}}\right]=1$

Table 18. Examples, Omega polynomial in Oct_ $\mathrm{B}_{12} \mathrm{~N}_{12}\left(k_{-}\right.$all $)$net.

k	Omega(Oct_B $\left.{ }_{12} \mathrm{~N}_{12}\right) \mathrm{R}[4,6]$	Atoms	sp Atoms $(\%)$	Bonds	$\mathrm{CI}(\mathrm{G})$	$\mathrm{R}[4]$	$\mathrm{R}[6]$
2	$4 \mathrm{x}^{6}+8 \mathrm{x}^{13}+2 \mathrm{x}^{16}$	96	$32(33.33)$	160	23592	31	40
3	$4 \mathrm{x}^{6}+4 \mathrm{x}^{16}+8 \mathrm{x}^{22}+4 \mathrm{x}^{24}+2 \mathrm{x}^{30}$	240	$120(50.00)$	420	167256	88	112
4	$4 \mathrm{x}^{6}+4 \mathrm{x}^{16}+4 \mathrm{x}^{30}+8 \mathrm{x}^{33}+8 \mathrm{x}^{37}+2 \mathrm{x}^{48}$	480	$288(60.00)$	864	717456	189	240
5	$4 \mathrm{x}^{6}+4 \mathrm{x}^{16}+4 \mathrm{x}^{30}+8 \mathrm{x}^{46}+4 \mathrm{x}^{48}+8 \mathrm{x}^{52}+4 \mathrm{x}^{54}+2 \mathrm{x}^{70}$	840	$560(66.67)$	1540	2297592	346	440
6	$4 \mathrm{x}^{6}+4 \mathrm{x}^{16}+4 \mathrm{x}^{30}+4 \mathrm{x}^{48}+8 \mathrm{x}^{61}+8 \mathrm{x}^{69}+4 \mathrm{x}^{70}+8 \mathrm{x}^{73}+2 \mathrm{x}^{96}$	1344	$960(71.43)$	2496	6067512	571	728

References

1. M. V. Diudea, Nanomolecules and Nanostructures - Polynomials and Indices, MCM No. 10, University of Kragujevac, Serbia, 2010.
2. M. V. Diudea_and Cs. L. Nagy, Periodic Nanostructures, SPRINGER, 2007.
3. M. V. Diudea, (Ed.), Nanostructures, Novel Architecture, NOVA, New York, 2005.
4. N. A. Anurova, V. A. Blatov, G. D. Ilyushin, D. M. Proserpio, Natural Tilings for Zeolite-Type Frameworks, J. Phys. Chem. C, 114 (2010) 10160-10170.
5. O. Delgado-Friedrichs, M. O'Keeffe, O. M. Yaghi, Three-periodic nets and tilings: edge-transitive binodal structures, Acta Cryst. A62 (2006) 350-355.
6. M. Dutour Sikirić, O. Delgado-Friedrichs, M. Deza, Space fullerenes: a computer search for new Frank-Kasper structures, Acta Cryst., A66 (2010) 602-615.
7. O. Delgado-Friedrichs, M. O'Keeffe, Simple tilings by polyhedra with five- and six-sided faces, Acta Cryst., A66 (2010) 637-639.
8. P. S. Decarli, J. C. Jamieson, Formation of diamond by explosive shock, Science, 133 (1961) 1821-1822.
9. A. E. Aleksenskǐ̌, M. V. Baǐdakova, A. Y. Vul, V. Y. Davydov, A. Pevtsova, Diamond-graphite phase transition in ultradisperse-diamond clusters. Phys Solid State, 39 (1997) 1007-1015.
10. E. Osawa,. Recent progress and perspectives in single-digit nanodiamond, Diamond Relat. Mater., 16 (2007) 2018-2022.
11. E. Osawa, Monodisperse single nanodiamond particulates, Pure Appl. Chem., $\mathbf{8 0}$ (2008) 1365-1379.
12. O. A. Williams, O. Douhéret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond, Chem. Phys. Lett., 445 (2007) 255-258.
13. N. Dubrovinskaia, S. Dub, L. Dubrovinsky, Superior wear resistance of aggregated diamond nanorods, Nano Lett., 6 (2006) 824-826.
14. H. P. Lorenz, Investigation of TiN as an interlayer for diamond deposition on steel, Diamond Relat. Mater., 4 (1995) 1088-1092.
15. A. K. Khachatryan, S. G. Aloyan, P. W. May, R. Sargsyan, V. A. Khachatryan, V. S. Baghdasaryan, Graphite-to-diamond transformation induced by ultrasound cavitation, Diamond Relat. Mater., 17 (2008) 931-936.
16. D. Tarasov, E. Izotova, D. Alisheva, N. Akberova, R. A. Freitas Jr., Structural Stability of Clean, Passivated, and Partially Dehydrogenated Cuboid and Octahedral Nanodiamonds Up to 2 Nanometers in Size, J. Comput. Theor. Nanosci., 8 (2011) 147-167
17. C. Frondel, U. B. Marvin, Lonsdaleite, a hexagonal polymorph of diamond, Nature, 214 (1967) 587-589.
18. M. V. Diudea, A. Bende and D. Janežič, Omega polynomial in diamond-like networks, Fullerenes, Nanotubes, Carbon Nanostructures., 18 (2010) 236-243.
19. S. T. Hyde, M. O_Keeffe, D. M. Proserpio, A Short History of an Elusive Yet Ubiquitous Structure in Chemistry, Materials, and Mathematics, Angew. Chem. Int. Ed., 47 (2008) 7996 - 8000.
20. M. V. Diudea, M. Petitjean, Symmetry in multi tori, Symmetry, Culture, Sci., 19 (2008) 285-305.
21. E. Barborini, P. Piseri, P. Milani, G. Benedek, C. Ducati, J. Robertson, Negatively curved spongy carbon, Appl. Phys. Lett., 81 (2002) 3359-3361.
22. G. Benedek, H. Vahedi-Tafreshi, E. Barborini, P. Piseri, P. Milani, C. Ducati, J. Robertson, The structure of negatively curved spongy carbon. Diamond Relat. Mater., 12 (2003) 768-773.
23. M. V. Diudea, P. E. John, Covering Polyhedral Tori, MATCH Commun. Math. Comput. Chem., 44 (2001) 103-116.
24. M. V. Diudea, Capra - a leapfrog related operation on maps, Studia Univ. "BabesBolyai", 48 (2003) 3-16.
25. M. V. Diudea, M. Ştefu, P. E. John, A. Graovac, Generalized operations on maps, Croat. Chem. Acta, 79 (2006) 355-362.
26. M. V. Diudea, A. Ilić, All-pentagonal face Multi Tori, J. Comput. Theor. Nanosci., 8 (2011) 736-739.
27. M. V. Diudea, All-pentagonal face nano-dendrimer and related structures, Int. J. Chem. Model., (2011), in press.
28. M. V. Diudea, Diamond D_{5}, a novel allotrope of carbon. Studia Univ. Babes-Bolyai, Chemia, 55 (2010) 11-17.
29. M. V. Diudea, Cs. L. Nagy, All pentagonal ring structures related to the C_{20} fullerene: diamond D_{5}, Diamond Relat Mater., (submitted).
30. M. V. Diudea, Cs. L. Nagy, Diamond D_{5}, a novel carbon allotrope, Diamond Relat. Mater., (submitted).
31. O. Delgado-Friedrichs, M. O'Keeffe, On a simple tiling of Deza and Shtogrin, Acta Cryst. A62 (2006) 228-229.
32. D. M. Proserpio, V. A. Blatov, M. V. Diudea, On crystallographic aspects related to Diamond D_{5}, (in preparation).
33. T. Soma, A. Sawaoka, S. Saito, Characterization of Wurtzite type Boron Nitride synthesized by shock compression, Mat. Res. Bull., 9 (1974) 755-762.
34. O. Stephan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, T. Sato, Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material, Appl. Phys. A, 67 (1998) 107-111.
35. F. Jensen, H. Toftlund, Structure and stability of C_{24} and $\mathrm{B}_{12} \mathrm{~N}_{12}$ isomers, Chem. Phys. Lett., 201 (1993) 89-96.
36. Mei-Ling Sun, Z. Slanina, Shyi-Long Lee, Square/hexagon route towards the boron-nitrogen clusters, Chem. Phys. Lett., 233 (1995) 279-283.
37. P.W. Fowler, K.M. Rogers, G. Seifert, M. Terrones, H. Terrones, Pentagonal rings and nitrogen excess in fullerene-based BN cages and nanotube caps, Chem. Phys. Lett., 299 (1999) 359-367.
38. T. Oku, M. Kuno, H. Kitahara, I. Narita, Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials, Int. J. Inorg. Mater., 3 (2001) 597-612.
39. I. Narita, T. Oku, Effects of catalytic metals for synthesis of BN fullerene nanomaterials, Diamond Relat Mater., 12 (2003) 1146-1150.
40. P. E John, A. E. Vizitiu, S. Cigher, M. V. Diudea, CI Index in Tubular Nanostructures, MATCH Commun. Math. Comput. Chem., 57 (2007) 479-484.
41. M. V. Diudea, S. Klavžar, Omega polynomial revisited, Acta Chem. Sloven., 57 (2010) 565-570.
42. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
43. M. V. Diudea, S. Cigher, and P. E. John, Omega and related counting polynomials, MATCH Commun. Math. Comput. Chem., 60 (2008) 237-250.
44. M. V. Diudea, Counting polynomials in partial cubes, in: I. Gutman, B. Furtula (Eds.), New Molecular Structure Descriptors - Theory and Applications I, University of Kragujevac, Kragujevac, 2010, pp. 191-215.
45. D. Ž. Djoković, Distance preserving subgraphs of hypercubes, J. Combin. Theory Ser. B, 14 (1973) 263-267.
46. P. M. Winkler, Isometric embedding in products of complete graphs, Discrete Appl. Math., 8 (1984) 209-212.
47. S. Klavžar, Some comments on co graphs and CI index, MATCH Commun. Math. Comput. Chem., 59 (2008) 217-222.
48. M. V. Diudea, Counting polynomials and related indices by edge cutting procedures, MATCH Commun. Math. Comput. Chem., 64 (2010) 569-590.
49. A. R. Ashrafi, M. Jalali, M. Ghorbani, and M. V. Diudea, Computing PI and Omega polynomials of an infinite family of fullerenes, MATCH Commun. Math. Comput. Chem., 60 (2008) 905-916.
50. M. V. Diudea and A. Ilić, Note on Omega polynomial, Carpath. J. Math. 25 (2009) 177-185.
51. M. V. Diudea, Omega polynomial, Carpath. J. Math., 22 (2006) 43-47.
52. A. R. Ashrafi, M. Ghorbani, and M. Jalali, Computing Sadhana polynomial of Vphenylenic nanotubes and nanotori, Indian J. Chem. 47A (2008) 535-537.
53. P. V. Khadikar, V. K. Agrawal, S. Karmarkar, Prediction of Lipophilicity of Polyacenes Using Quantitative Structure-Activity Relationships, Bioorg. Med. Chem., 10 (2002) 3499-3507.
54. M. V. Diudea, A. E. Vizitiu, M. Mirzargar, A. R. Ashrafi, Sadhana Polynomial in Nano-Dendrimers, Carpath. J. Math., 26 (2010) 59-66.
55. P. V. Khadikar, On a Novel Structural Descriptor PI, Nat. Acad. Sci. Lett., 23 (2000) 113-118
56. A. R. Ashrafi, B. Manoochehrian, H. Yousefi-Azari, On the PI polynomial of a graph, Util. Math., 71 (2006) 97-108.
57. M. J. Nadjafi-Arani, G. H. Fath-Tabar, A. R. Ashrafi, Extremal graphs with respect to the vertex PI index, Appl. Math. Lett., 22 (2009) 1838-1840.
58. A. Ilić, Note on PI and Szeged indices, Math. Comput. Model., 52 (2010) 1570-1576.

[^0]: -Corresponding Author (E-mail: diudea@gmail.com)

