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ABSTRACT 

We derived explicit formulae for the eccentric connectivity index and Wiener index of 
2dimensional square-octagonal TUC4C8(R) lattices with open and closed ends. New 
compression factors for both indices are also computed in the limit N∞. 
 
Keywords: 2Dimensional square-octagonal lattice; eccentric connectivity index; Wiener 
index; topological compression factors.  

 
 

1 INTRODUCTION 

A graph G consists of a set of vertices V(G) and a set of edges E(G). If the vertices 

u,vV(G) are connected by an edge e then we write e = uv. In chemical graphs, each vertex 

represents an atom of the molecule, and covalent bonds between atoms are represented by 
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the edge between the corresponding vertices. This shape derived from a chemical 

compound is often called its molecular graph, and can be path, a tree, or in general a graph. 

 A real number that describes a molecular graph is called a topological index. The 

first use of a topological index for the correlation of the measured properties of molecules 

was made in 1947 by chemist Harold Wiener. In that year, he introduced the notion of path 

number of a graph as the sum of the distances between any two carbon atoms in the 

molecule, in terms of carbon-carbon bonds [1]. We encourage the interested readers to 

consult [2,3] for more information about Wiener index of trees and hexagonal systems. 

Hosoya [4] reformulated the Wiener index in terms of distances between vertices in an 

arbitrary graph. He defined W as the half-sum of distances between all pairs of vertices of 

the graph under consideration, W(G) = u>v d(u,v), where d(u,v) is the number of edges in a  

shortest path connecting the vertices u and v. 

 For a given vertex u of V(G) its eccentricity (u) is the largest distance between u 

and any other vertex v of G. The maximum eccentricity over all vertices of G is called the 

diameter of G and denoted here by M(G) and the minimum eccentricity among the vertices 

of G is called radius of G and denoted by R(G). The set of vertices whose eccentricity is 

equal to the radius of G is called the center of G. It is well known that each tree has either 

one or two vertices in its center. The eccentric connectivity index [5] (G) of a graph G is 

defined as (G) = V(G) δi εi   being δi  the number of bonds of the vertex i. In papers 

[610] the authors applied this topological index to discover some chemico-physical 

properties of crystallographic materials. In this paper the topological properties of a class of 

square-octagonal lattices, as well as the corresponding nanotubes are investigated. For more 

information in this topic we refer to [1118] and references therein. We also refer to 

[1923] for mathematical and physical properties of fullerenes and nanotubes. 
 

2 TOPOLOGICAL CONSTRUCTION OF THE TUC4C8(R) LATTICE 

The unit (square or rhombic) cell U of the square-octagonal lattice R has been chosen 

having the 4 sites (vertices) represented in Figure 1. This selection allows the generation of 

the complete 2-dimensional infinite lattice by pure translational operation along both lattice 

directions. We denote the obtained lattice by TUC4C8(R); the lattice obtained from the 

same basic cell by translating it along lines bisecting its sides is denoted by TUC4C8(S). It 

this paper we consider only TUC4C8(R) lattices and tori and denote them by R and RC 

respectively. 
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Figure 1. The 4 vertices of the unit cell U are depicted in the dashed rectangle. Some other unit cells are 
shown, also partially generated. 
 

In the simplest case of the lattice with boundary cyclic conditions (closed ends 

lattice RC ), all vertices are equivalent with valency (degree) equals δi=3. RC graph is then 

built by adding an increasing number L of unit cells U along both plane directions, to 

account for N=4L2 graph vertices. The number of edges (chemical bonds) in the lattice is 

denoted by B. The 3regularity of RC connectivity imposes that B(N)=3/2N, similar to the 

well known fullerene case. 

For our lattice graph we consider several topological invariants: W(N), the Wiener 

index can be defined as the half of the sum of all distances dij in the distance matrix D of 

the graph; M(N), the largest distance in the graph (diameter); w the minimal sum of 

distances in a row (column) of D divided by 2. The vertex (vertices) characterized by w are 

the minimal vertex (vertices) v of the graph.  

We recall that in a graph on N vertices the sum of all local eccentricities multiplied 

by the corresponding vertex degrees δi defines the topological eccentric connectivity index: 
 

ξ(N)= Σi εi δi         
 

Previously introduced graph invariants W, M, w, ξ, follow polynomial growing laws 

in N1/2 according to the scheme valid for any 2dimensional lattice: 

W(N) = a5N
5/2 + a4N

2 + a3N
3/2 + a2N + a1N

1/2 + a0  (1) 

M(N) = b1N
1/2 + b0      (2) 

w(N) = d3N
3/2 + d2N + d1N

1/2  + d0     (3) 

ξ(N) = f3N
3/2 + f2N + f1N

1/2 + f0    (4) 
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Leading exponent s=5/2 in (1) depends from lattice dimensionality d in the 

following general relation [3]: 
 

s = 2+d-1       
 

  For the square-octagonal lattice in Figure 1, all coefficients in (14) are rational 

numbers and only depend on topological connectivity of its graph and they are easily 

numerically interpolated from different values of the quantities at growing N; see Table 1 

for the case of RC graph. The symmetry of the RC graph forces all w(N) contributions to 

W(N) to be equal and therefore we have W(N)=Nw(N). Moreover, due to the cyclic 

boundary conditions, the eccentricity ε of any node equals graph diameter M. Being vertex 

degrees also the same δ =3 for any graph node, the local contribution to eccentric 

connectivity index is given by 
 

e = δ ε = 3M,      (5) 
 

and therefore 
 

ξ(N) = Ne(N) = 3NM(N).     (6) 
 

In Table 1 we present numerical values of graph invariants (13,5,6) for RC lattices 

for L=1,3,…,13. Explicit formulae for invariants as functions of N are: 
 

W(N) = 7/24 N5/2 -5/12 N3/2     (7) 

M(N) = N1/2 -1       (8) 

w(N) = 7/24 N3/2 -5/12 N1/2      (9) 

  ξ(N) = 3(N3/2 – N)      (10) 
 

The relation (8) for M has exactly the same form of the one for the square closed 

lattice. In addition, the eccentric connectivity index (10) shows an interesting analogy with 

the one of the square closed lattice ξS that in fact is ξS=4(N3/2N). Having δS =4, one may 

then write it as ξS= δS(N
3/2N), that is similar to (10) ξ= δ(N3/2  N) considering that the 

square-octagonal lattice has δ = 3, as previously stated. We notice also that for this highly 

symmetric closed lattice W(N)=Nw 
 

In the limit of large N, the leading term of the topological indices (6) are: 
 

wC  7/24 N3/2, WC7/24 N5/2, ξC 3N3/2   (11) 

 

where by superscript C we emphasize the fact that we consider graphs closed on 

themselves, i.e. those satisfying cyclic boundary conditions. In the next paragraph, we will 

use the limits (11) to compare them with analogous limits for graphs with open ends to 

determine the so called compression ratios for square-octagonal infinite graphs. 
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Table 1. Graph Invariants for RC Graphs with N=4L2 Vertices. 

L N M W  w  ξ 
1 4 1 6 1.5 12 
3 36 5 2178 60.5 540 
5 100 9 28750 287.5 2700 
7 196 13 155722 794.5 7644 
9 324 17 548694 1693.5 16524 

11 484 21 1498706 3096.5 30492 
13 676 25 3458078 5115.5 50700 

 

3  THE CASE OF TUC4C8(R) GRAPH WITH OPEN ENDS 

The square-octagonal lattice without cyclic boundary conditions we call the square-

octagonal lattice (graph) with open ends and denote by R. The number of edges is readily 

obtained as B=3/2N -N1/2. Again, the interpolation method quickly produces, starting from 

the values shown in Table 2, the closed forms for all previous topological lattice invariants 

(1-4): 
 

W(N) = 2/5 N5/2  2/3 N3/2 +4/15 N1/2    (12) 

M(N) = 2(N1/2 1)      (13) 

w(N) = 7/24 N3/2  1/6 N1/2      (14) 

ξ(N) = 19/4 N3/2 –27/4N +2 N1/2 +1    (15) 
 

By inspection of Table 1 and Table 2, one observes that graph diameter M just 

doubles by passing to the open lattice R, as it is basically true also for graphenic lattices 

[23]. 

We compute now the topological efficiency index ρ, a topological invariant 

introduced recently [22] to measure the graph efficiency in filling the space when compared 

to its minimal vertex v (that, by definiton, may be seen as the most efficient vertex in 

contributing to graph overall compactness): 
 

ρ =W/ Nw with      ρ ≥ 1.    (16) 
 

From Equation (16), we have ρ =1 for RC as in the C60 buckyball whereas for the open ends 

case R formulae (12) and (14) allow its exact determination. In the limit of large lattices 

N ∞ : 
 

ρ(R)  48/35 ≈ 1.371 .    (17) 
 

The above limit is asymptotically reached in a monotone growth as can be seen  

from Table 2. It is interesting to note that the open ends square lattice tends in the limit to 
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reach slightly lower ρ value of 4/3 showing therefore an improved way to fill the plane in 

respect to R. 

Asymptotic values of the Wiener index and eccentric connectivity index for R 

graphs are given by: 
 

w  7/24 N3/2, W  2/5 N5/2, ξ  19/4N3/2     
 

and, by combining this with previously (11) obtained limits for RC, the asymptotic values 

of the compression ratios for W and ξ are determined as 
 

WC/ W = 35/48        

ξC/ ξ = 12/19        
 

It is worth mentioning that above numerical values of both compression factors also 

appear in graphene lattices, as recently obtained [23]. 
 

Table 2. Graph Invariants for R Graphs with N=L2 Vertices. 

L N M W  w ξ ρ 
1 4 2 8 2 16 1 
3 36 10 2968 62 796 1,330 
5 100 18 39336 290 4096 1,356 
7 196 26 213304 798 11740 1,364 
9 324 34 751944 1698 25552 1,367 

11 484 42 2054360 3102 47356 1,368 
13 676 50 4740840 5122 78976 1,369 

 

4 CONCLUSIONS 

In the present note it has been demonstrated that the Wiener index, the eccentric 

connectivity index and other invariants (see Eqs. (1-4)), can be all represented for d=2 

infinite lattices as polynomials in N1/d, where N stands for the number of vertices of the 

lattice under study. 

The asymptotic values of the Wiener index and the eccentric connectivity index for 

large N are given below for all lattices studied in the present note, compared to the square 

lattice. The leading coefficient of W is a measure of compactness of a given lattice and, as it 

should be expected, the lattices have to be ordered as shown below, from the most compact 

to the less compact. Square lattices show the largest topological efficiency for both cases, 

closed ends SC and open ends S infinite structures, as previously noticed in comment on 

values of topological efficiency index (17) for R. 
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Lattice type W(N) ξ(N) 
SC 1/4 N5/2 4N3/2 

RC 7/24N5/2 3N3/2 

S 1/3N5/2 6N3/2 

R 2/5N5/2 19/4N3/2 

 

Future computation will be done in comparing other bidimensional infinite structures. 
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