Some Lower Bounds for Estrada Index

Bo ZHOU ${ }^{1}$ and Zhibin Du
Department of Mathematics, South China Normal University, Guangzhou 510631, China

(Received July 20, 2010)

Abstract

For a graph G with n vertices, its Estrada index is defined as $E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}}$ where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of G. A lot of properties especially lower and upper bounds for the Estrada index are known. We now establish further lower bounds for the Estrada index.

Keywords: Estrada index, eigenvalues (of graph), spectral moments, lower bounds.

1 Introduction

Let G be a simple graph with n vertices. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of G arranged in a non-increasing order [1]. The Estrada index of the graph G is defined as

$$
E E=E E(G)=\sum_{i=1}^{n} e^{\lambda_{i}} .
$$

This graph invariant was proposed as a structure-descriptor, used in the modeling of certain features of the 3D structure of organic molecules [2], in particular of the degree of proteins and other long-chains biopolymers [3,4]. It has also found applications in a large variety of other problems, see, e.g., [5-7]. Lower and upper bounds have been established for the Estrada index, see [8-14]. Some other properties for the Estrada index may be found in [15-19]. Here we present some easily computed lower bounds for the Estrada index.

[^0]
2 Preliminaries

Let G be a graph with n vertices. For $k=0,1,2, \ldots$, denote by $M_{k}=M_{k}(G)$ the k-th spectral moment of the graph G, i.e., $M_{k}=\sum_{i=1}^{n} \lambda_{i}^{k}$. Note that $M_{1}=0$. Then

$$
E E(G)=\sum_{i=1}^{n} \sum_{k \geq 0} \frac{\lambda_{i}^{k}}{k!}=\sum_{k \geq 0} \frac{M_{k}}{k!}=n+\sum_{k \geq 2} \frac{M_{k}}{k!} .
$$

The first Zagreb index [20] of the graph G is defined as $Z g(G)=\sum_{u \in V(G)} d_{u}^{2}$, where d_{u} is the degree of vertex u and $V(G)$ is the vertex set of G. Let $t(G)$ be the number of triangles in G. Recall that M_{k} is equal to the number of closed walks of length k in the graph [1].

Lemma 1. Let G be a graph with m edges. Then for $k \geq 4, M_{k+2} \geq M_{k}$ with equality for all even $k \geq 4$ if and only if G consists of m copies of complete graph on two vertices and possibly isolated vertices, and with equality for all odd $k \geq 5$ if and only if G is a bipartite graph.

Proof (i) For even $k \geq 4$, by repeating the first edge twice for a closed walk of length k, we get a closed walk of length $k+2$, and then $M_{k+2} \geq M_{k}$ with equality for all even $k \geq 4$ if and only if G consists of m copies of complete graph on two vertices and possibly isolated vertices.
(ii) For odd $k \geq 5$, by similar considering as above, it is easily seen that $M_{k+2} \geq M_{k}$ with equality for all odd $k \geq 5$ if and only if G is bipartite.

3 Results

We now establish several lower bounds for the Estrada index and compare them with the known bounds in the literature.

Proposition 2. Let G be a graph with n vertices and m edges. Then

$$
\begin{equation*}
E E(G) \geq n+m+t(G)+\frac{1}{2}\left(e+e^{-1}-3\right) M_{4}+\frac{1}{2}\left(e-e^{-1}-\frac{7}{3}\right) M_{5} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
E E(G) \geq n+m+t(G)+\left(e+e^{-1}-3\right)[\operatorname{Zg}(G)-m]+15\left(e-e^{-1}-\frac{7}{3}\right) t(G) \tag{2}
\end{equation*}
$$

with either equality if and only if G consists of m copies of complete graph on two vertices and possibly isolated vertices.

Proof. Note that $M_{2}=2 m, M_{3}=6 t(G)$. By Lemma 1,

$$
\begin{aligned}
E E(G) & =n+m+t(G)+\sum_{k \geq 2} \frac{M_{2 k}}{(2 k)!}+\sum_{k \geq 2} \frac{M_{2 k+1}}{(2 k+1)!} \\
& \geq n+m+t(G)+\sum_{k \geq 2} \frac{M_{4}}{(2 k)!}+\sum_{k \geq 2} \frac{M_{5}}{(2 k+1)!} \\
& =n+m+t(G)+M_{4}\left(\frac{e+e^{-1}}{2}-1-\frac{1}{2!}\right)+M_{5}\left(\frac{e-e^{-1}}{2}-1-\frac{1}{3!}\right) \\
& =n+m+t(G)+\frac{1}{2}\left(e+e^{-1}-3\right) M_{4}+\frac{1}{2}\left(e-e^{-1}-\frac{7}{3}\right) M_{5}
\end{aligned}
$$

with equality if and only if $M_{k}=M_{4}$ for all even $k \geq 4$ and $M_{k}=M_{5}$ for all odd $k \geq 5$, which by Lemma 1, is equivalent to the fact that G consists of m copies of complete graph on two vertices and possibly isolated vertices.

For a fixed vertex u, there are at least d_{u}^{2} closed walks of length four starting from u and $d_{u}\left(d_{u}-1\right)$ closed walks of length four starting from a neighbor of u such that vertices in such walks are only u and its neighbors, and then $M_{4} \geq 2 \operatorname{Zg}(G)-2 m$. (Actually, $M_{4}=2 Z g(G)-2 m+8 q$ where q is the number of quadrangles in G, see [21]). Note also that $M_{5} \geq 30 t(G)$ because there are ten closed walks of length five starting from a fixed vertex on a fixed triangle such that the vertices of the walks are only the vertices of the triangle. (Actually, $M_{5}=30 t(G)+10 p+10 r$ where p is the number of pentagons, and r is the number of subgraphs consisting of a triangle with a pendent vertex attached [21]. Now the second inequality follows.

Corollary 3. Let G be a graph with n vertices and m edges. Then

$$
\begin{equation*}
E E(G) \geq n+m+\left(e+e^{-1}-3\right)[Z g(G)-m] \tag{3}
\end{equation*}
$$

with equality if and only if G consists of m copies of complete graphs on two vertices and possibly isolated vertices.

Recently, Das and Lee [14] showed that for a connected graph with n vertices and $m \geq 1.8 n+4$ edges, $E E(G)>E E\left(P_{n}\right)$. This may be improved slightly using Corollary 3. Recall that [14] $E E\left(P_{n}\right)<2.746 n+3.569$. If $m \geq 1.4 n+2$, then by Corollary 3 and the Cauchy-Schwarz inequality, we have

$$
E E(G) \geq n+m+\left(e+e^{-1}-3\right)\left(\frac{4 m^{2}}{n}-m\right)>2.746 n+3.569>E E\left(P_{n}\right) .
$$

Remark 4. For a graph G with $n \geq 2$ vertices, it was shown in [12] that

$$
\begin{equation*}
E E(G) \geq e^{\lambda_{1}}+(n-1) e^{-\frac{\lambda_{1}}{n-1}} \tag{4}
\end{equation*}
$$

with equality if and only if G is the empty graph or the complete graph. Obviously, (3) and (4) are incomparable.

Remark 5. Let G be a graph with n vertices, m edges and nullity (number of zero eigenvalues) $n_{0}<n$. Note that $n_{0}=n$ if and only if G is an empty graph. Gutman [11] showed that

$$
\begin{equation*}
E E(G) \geq n_{0}+\frac{n-n_{0}}{2}\left(e^{a}+e^{-a}\right) \tag{5}
\end{equation*}
$$

with equality if and only if $n-n_{0}$ is even, G consists of copies of complete bipartite graphs $K_{r_{j}, t_{j}}, j=1,2, \ldots,\left(n-n_{0}\right) / 2$, such that all $r_{j} t_{j}$ are equal, and the remaining vertices if exist are isolated vertices, where $a=\sqrt{2 m /\left(n-n_{0}\right)}$. A different proof may be found in [12]. For odd cycle C_{n} with $n \geq 3, n_{0}=0$ (see [21]) and $m=n$, we have

$$
\begin{aligned}
& n+m+\left(e+e^{-1}-3\right)[Z g(G)-m]-\left[n_{0}+\frac{n-n_{0}}{2}\left(e^{a}+e^{-a}\right)\right] \\
& =n\left[2+3\left(e+e^{-1}-3\right)-\frac{e^{\sqrt{2}}+e^{-\sqrt{2}}}{2}\right]>0
\end{aligned}
$$

Then for odd cycle C_{n} with $n \geq 3$, the bound in (3) is better than the one in (5), and thus it is easily seen that (3) and (5) are incomparable in general.

Acknowledgements: This work was supported by the Guangdong Provincial Natural Science Foundation of China (Grant No. 8151063101000026).

REFERENCES

1. D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application, Johann Ambrosius Barth, Heidelberg, 1995.
2. E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319 (2000) 713-718.
3. E. Estrada, Characterization of the folding degree of proteins, Bioinformatics 18 (2002) 697-704.
4. E. Estrada, Characterization of the amino acid contribution to the folding degree of proteins, Proteins 54 (2004) 727-737.
5. E. Estrada and J. A. Rodríguez-Valázquez, Subgraph centrality in complex networks, Phys. Rev. E 71 (2005) 056103-1-9.
6. E. Estrada and J. A. Rodríguez-Valázquez, Spectral measures of bipartivity in complex networks, Phys. Rev. E 72 (2005) 046105-1-6.
7. E. Estrada, J. A. Rodríguez-Valázquez and M. Randić, Atomic branching in molecules, Int. J. Quantum Chem. 106 (2006) 823-832.
8. J. A. de la Peña, I. Gutman and J. Rada, Estimating the Estrada index, Lin. Algebra Appl. 427 (2007) 70-76.
9. I. Gutman and S. Radenković, A lower bound for the Estrada index of bipartite molecular graphs, Kragujevac J. Sci. 29 (2007) 67-72.
10. I. Gutman, E. Estrada and J. A. Rodríguez-Velázquez, On a graph-spectrum-based structure descriptor, Croat. Chem. Acta 80 (2007) 151-154.
11. I. Gutman, Lower bounds for Estrada index, Publ. Inst. Math. Beograd (N.S.) 83 (2008) 1-7.
12. B. Zhou, On Estrada index, MATCH Commun. Math. Comput. Chem. 60 (2008) 485-492.
13. B. Zhou and N. Trinajstić, Estrada index of bipartite graphs, Int. J. Chem. Model. 1 (2008) 387-394.
14. K. C. Das and S.-G. Lee, On the Estrada index conjecture, Lin. Algebra Appl. 431 (2009) 1351-1359.
15. I. Gutman, S. Radenković, A. Graovac and D. Plavšić, Monte Carlo approach to Estrada index, Chem. Phys. Lett. 446 (2007) 233-236.
16. I. Gutman, B. Furtula, V. Marković and B. Glišić, Alkanes with greatest Estrada index, Z. Naturforsch. 62a (2007) 495-498.
17. I. Gutman and A. Graovac, Estrada index of cycles and paths, Chem. Phys. Lett. 436 (2007) 294-296.
18. I. Gutman, S. Radenković and B. Furtula, Relating Estrada index with spectral radius, J. Serb. Chem. Soc. 72 (2007) 1321-1327.
19. I. Gutman and S. Radenković, Estrada index of benzenoid hydrocarbons, Z. Naturforsch. 62a (2007) 254-258.
20. I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
21. D. M. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988.

[^0]: ${ }^{1}$ Corresponding author (Email: zhoubo@scnu.edu.cn).

