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ABSTRACT 

For a graph G  with n  vertices, its Estrada index is defined as EE(G) = 

n

i

ie
1


where  

n ,...,, 21  
are the eigenvalues of .G  A lot of properties especially lower and upper 

bounds for the Estrada index are known. We now establish further lower bounds for the 
Estrada index. 
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1 INTRODUCTION 

Let G  be a simple graph with n  vertices. Let 1 2, , ,   n  be the eigenvalues of G  

arranged in a non-increasing order [1]. The Estrada index of the graph G  is defined as 

1
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EE EE G e



   

This graph invariant was proposed as a structure-descriptor, used in the modeling of 

certain features of the 3D structure of organic molecules [2], in particular of the degree of 

proteins and other long-chains biopolymers [3,4]. It has also found applications in a large 

variety of other problems, see, e.g., [57]. Lower and upper bounds have been established 

for the Estrada index, see [814]. Some other properties for the Estrada index may be found 

in [1519]. Here we present some easily computed lower bounds for the Estrada index.  
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2 PRELIMINARIES 

Let G  be a graph with n  vertices. For 0,1, 2, ,k   denote by ( )k kM M G  the k-th 

spectral moment of the graph ,G  i.e., 
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The first Zagreb index [20] of the graph G  is defined as 2

( )

( ) ,u
u V G

Zg G d


   where 

ud  is the degree of vertex u  and ( )V G  is the vertex set of .G  Let ( )t G  be the number of 

triangles in .G   Recall that kM  is equal to the number of closed walks of length k  in the 

graph [1].  

 

Lemma 1.  Let G  be a graph with m  edges. Then for 4,k   2k kM M   with equality for 

all even 4k   if and only if G  consists of m  copies of complete graph on two vertices and 

possibly isolated vertices, and with equality for all odd 5k   if and only if G  is a bipartite 

graph.  

 

Proof   (i)  For even 4,k   by repeating the first edge twice for a closed walk of length ,k

we get a closed walk of length 2,k   and then 2k kM M   with equality for all even 4k   

if and only if G  consists of m  copies of complete graph on two vertices and possibly 

isolated vertices.  
 

(ii) For odd 5,k   by similar considering as above, it is easily seen that 2k kM M   

with equality for all odd 5k   if and only if G  is bipartite.                                                                          ■ 

 

3 RESULTS 

We now establish several lower bounds for the Estrada index and compare them with the 

known bounds in the literature.  

 

Proposition 2. Let G  be a graph with n  vertices and m  edges. Then 
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1 1 7
( ) ( ) ( 3)[ ( ) ] 15 ( )
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                   (2) 

 

with either equality if and only if G  consists of m  copies of complete graph on two 

vertices and possibly isolated vertices. 

 

Proof. Note that 2 2 ,M m  3 6 ( ).M t G  By Lemma 1, 
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with equality if and only if 4kM M  for all even 4k   and 5kM M  for all odd 5,k   

which by Lemma 1, is equivalent to the fact that G  consists of m  copies of complete graph 

on two vertices and possibly isolated vertices.  

 

For a fixed vertex ,u  there are at least 2
ud  closed walks of length four starting from 

u  and ( 1)u ud d   closed walks of length four starting from a neighbor of u  such that 

vertices in such walks are only u  and its neighbors, and then 4 2 ( ) 2 .M Zg G m   

(Actually, 4 2 ( ) 2 8M Zg G m q    where q  is the number of quadrangles in ,G  see [21]).  

Note also that 5 30 ( )M t G  because there are ten closed walks of length five starting from 

a fixed vertex on a fixed triangle such that the vertices of the walks are only the vertices of 

the triangle. (Actually, 5 30 ( ) 10 10M t G p r    where p  is the number of pentagons, and 

r  is the number of subgraphs consisting of a triangle with a pendent vertex attached [21].  

Now the second inequality follows.                                                                                                                     ■ 

 

Corollary 3. Let G  be a graph with n  vertices and m  edges. Then 

 

1( ) ( 3)[ ( ) ]EE G n m e e Zg G m                                          (3) 
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with equality if and only if G  consists of m  copies of complete graphs on two vertices and 

possibly isolated vertices. 
 

Recently, Das and Lee [14] showed that for a connected graph with n  vertices and 

1.8 4m n   edges, ( ) ( ).nEE G EE P  This may be improved slightly using Corollary 3. 

Recall that [14] ( ) 2.746 3.569.nEE P n   If 1.4 2, m n  then by Corollary 3 and the 

Cauchy-Schwarz inequality, we have 
 

2
1 4
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m

EE G n m e e m
n

  
      

 
 2.746 3.569 ( )nn EE P   . 

 

Remark 4.  For a graph G  with 2n   vertices, it was shown in [12] that 
 

1

1 1( ) ( 1) nEE G e n e


 
                                                            (4) 

 

with equality if and only if G  is the empty graph or the complete graph.  Obviously, (3) 

and (4) are incomparable.  

  

Remark 5. Let G  be a graph with n  vertices, m  edges and nullity (number of zero 

eigenvalues) 0 .n n   Note that 0n n  if and only if G  is an empty graph.  Gutman [11] 

showed that 
 

0
0( ) ( )

2
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                                                    (5) 

 

with equality if and only if 0n n  is even, G  consists of copies of complete bipartite 

graphs , ,
j jr tK 01, 2, , ( ) / 2,j n n   such that all j jr t  are equal, and the remaining vertices if 

exist are isolated vertices, where 02 /( )a m n n  .  A different proof may be found in 

[12]. For odd cycle nC  with 3,n   0 0n   (see [21]) and ,m n  we have 
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Then for odd cycle nC  with 3,n   the bound in (3) is better than the one in (5), and thus it 

is easily seen that (3) and (5) are incomparable in general.  
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