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ABSTRACT 

Wiener index is a topological index based on distance between every pair of vertices in a 
graph G. It was introduced in 1947 by one of the pioneer of this area e.g, Harold Wiener. In 
the present paper, by using a new method introduced by klavžar we compute the Wiener and 
Szeged indices of some nanostar dendrimers. 
 
Keywords: Wiener index, Szeged index, Randić index, Zagreb index, ABC index, GA index, 
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1. INTRODUCTION  

Topological indices are numbers associated with molecular graphs for the purpose of 

allowing quantitative structure-activity/property/toxicity relationships. The Wiener index is 

a distance-based topological invariant much used in the study of the structure-property and 

the structure-activity relationships of various classes of biochemically interesting 

compounds. It has been also much researched from the purely mathematical viewpoint, 

giving rise to a vast corpus of literature over the last decades. A number of derivative 

invariants have been investigated and many formulas for particular classes of graphs were 

obtained. We refer the reader to a comprehensive survey of results for trees by Dobrynin, 

Entringer and Gutman as an illustration of that effort [1]. Typical results of such work are 

usually formulas expressing the Wiener index of graphs from the considered class via some 
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other graph invariants. For trees (acyclic graphs) Wiener defined W as the sum of products 

of the numbers of vertices on the two sides of each edge; for more details about Wiener 

index see [2 - 5]. Here our notation is standard and mainly taken from standard books of 

graph theory such as, e.g., [6]. All graphs considered in this paper are simple and 

connected.  

The vertex and edge sets of a graph G are denoted by V(G) and E(G), respectively. 

The distance dG(x, y) between two vertices x and y of V(G) is defined as the length of any 

shortest path in G connecting x and y. The Wiener index W(G) of a graph G is defined as 

[7] .),(},{ vu G vud = W(G)  

The Szeged index is another topological index which is introduced by Ivan Gutman [8, 

9]. It is defined as the sum of [nu(e|G) nv(e|G)], over all edges of G. Here, nu(e|G) is the 

number of vertices of G lying closer to u than to v and nv(e|G) is the number of vertices of G 

lying closer to v than to u. Notice that vertices equidistance from u and v are not taken into 

account. A subgraph H of a graph G is called isometric if dH(u, v) = dG(u, v) for all u, v in V(H). 

Isometric subgraphs of hypercubes are called partial cubes. Clearly, all trees are partial cube. 

The goal of this paper is computing the Wiener and Szeged indices of some bipartite chemical 

graphs by using cut method. 

 

2. MAIN RESULTS AND DISCUSSION 

2.1 Wiener and Szeged Indices 
 
The Djoković–Winkler relation Θ is defined on the edge set of a graph in the following 

way [1012]. Edges e = xy and f = uv of a graph G are in relation Θ if 

( , ) ( , ) ( , ) ( , ).G G G Gd x  u d y  v d x v d y  u    Winkler [12] proved that among bipartite graphs, Θ 

is transitive precisely for partial cubes; hence the relation Θ, partitions the edge set of a partial 

cube. Let G be a partial cube and  1 2 rF  F      F  , , . . . ,  be the partition of its edge set induced 

by the relation Θ. Then we say that  is the Θ-partition of G. 

Let now G be a partial cube,   be its Θ-partition and F  . Denoted by G1(F) and 

G2(F) means the connected components of G\F. Set n1(F) = |G1(F)|, n2(F) = |G2(F)| and we 

have the following Theorem proved by Klavžar in [11]: 
 

Theorem 1. Let G be a partial cube and   its Θ-partition. Then 

( ) ( ) ( )
F

W G n F n F


  1 2  

and 

( ) | | ( ) ( )
F

Sz G F n F n F


  1 2 . 
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In the next section we apply this Theorem to compute the mentioned topological indices 

of dendrimers, see [13  18] for more information on the Wiener and Szeged indices of graphs. 

Consider a nanostar dendrimer Dn depicted in Figure 1. 
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Figure 1. The nanostar dendrimer Dn for n = 1. 

 
One can see that the nanostar dendrimer graph is a partial cube. In this section by using 

Klavžar Theorem we can compute the Wiener and Szeged indices of this infinite class of 

dendrimers. To do this, consider the following Examples: 
 

Example 2. Consider the nano dendrimer depicted in Fig. 1. The Θ - partition of edge set is Γ 

= {F1,F2}, where F1 = {{1, 3}, {4, 6}} and F2 = {{6, 7}}. On the other hand, there are nine 

partitions equivalent with F1 and F2 is unique. So, according to Theorem 1 we have: 

( ) 9 3 16 3 6 13 666,

( ) 2 9 3 16 3 6 13 1098.

W G

Sz G

      

       
 

 

Example 2. Consider the nanostar dendrimer Dn, for n = 2 (Fig. 2). The Θ - partition of edge 

set is Γ = {F1, F2, … ,F7,}, where |F1|= |F4| = |F6| = 2, |F2| = |F3| = |F5| = |F7| = 1. On the other 
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hand there are 18 partitions equivalent with F1, 6 with F2, 3 with F3, 9 with F4, 3 with F5, 9 

with F6 and 3 with F7, respectively. Thus, according to Theorem 1 we have: 
 

F4

F1

F2

F3

F6

F7

F5

 

Figure 2. The nanostar dendrimer for n = 2. 

 

By continuing this method, we can prove the following Theorem: 

 

Theorem 3. Consider the nanostar dendrimer Dn. Then the Wiener and Szeged indices of 

Dn are as follows: 
 

Proof. For computing Wiener and Szeged indices we should to compute all strips in Dn. To 

do this it is enough to consider five types of Θ – partitions, e. g. F1, F2, …, F5. In other 

words there exist 9 2 (1 )n i i n    cuts of type F1, 3 2 (1 )n i i n    cuts of type F2, 
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3 2 (2 )n i i n    cuts of type F3, 9 2 (2 )n i i n    cuts of type F4 and 3 2 (2 )n i i n    

cuts of type F5, respectively. On the other hand |F1| = |F4| = 2 and |F2| = |F3| = |F5| = 1. So, 

by using Theorem 1 we should compute Wiener and Szeged indices for every case, 

separately: 

 

 Case 1 (Components of G\F1): In this case the values of Wiener and Szeged indices 

are: 

1 1 2
1

1

1 1 2
1

1

9 2 ((19 2 16) | ( ) | (19 2 16) ),

18 2 ((19 2 16) | ( ) | (19 2 16) ).

n
n i i i

n
i

n
n i i i

n
i

W V D

S V D

  



  



     

     




 

 Case 2 (Components of G\F2): In this case the values of Wiener and Szeged indices 

are: 

1 1 2
2

1

1 1 2
2

1

3 2 ((19 2 13) | ( ) | (19 2 13) ),

3 2 ((19 2 13) | ( ) | (19 2 13) ).

n
n i i i

n
i

n
n i i i

n
i

W V D

S V D

  



  



     

     




 

 Case 3 (Components of G\F3): In this case the values of Wiener and Szeged indices 

are: 

1 1 2
3

2

1 1 2
3

2

3 2 ((19 2 25) | ( ) | (19 2 25) ),

3 2 ((19 2 25) | ( ) | (19 2 25) ).

n
n i i i

n
i

n
n i i i

n
i

W V D

S V D

  



  



     

     




 

 Case 4 (Components of G\F4): In this case the values of Wiener and Szeged indices 

are: 

1 1 2
4

2

1 1 2
4

2

9 2 ((19 2 22) | ( ) | (19 2 22) ),

18 2 ((19 2 22) | ( ) | (19 2 22) ).

n
n i i i

n
i

n
n i i i

n
i

W V D

S V D

  



  



     

     




 

 Case 5 (Components of G\F5): In this case the values of Wiener and Szeged indices 

are: 

1 1 2
5

2

1 1 2
5

2

3 2 ((19 2 19) | ( ) | (19 2 19) ),

3 2 ((19 2 19) | ( ) | (19 2 19) ).

n
n i i i

n
i

n
n i i i

n
i

W V D

S V D
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In all cases 1| ( ) | 57 2 38n
nV D    . By summation of values of wi (1 ≤ i ≤ 5) we 

have:  

2 2

2 2

29241
( ) 2 19494 2 28863 2 9369,

4

48735
( ) 2 32490 2 48195 2 15705.

4

n n n
n

n n n
n

W D n

Sz D n

     

     
 

 

2.2 Zagreb Indices, Geometric – Arithmetic Index, ABC Index and Randic Index 

The Zagreb indices have been introduced more than thirty years ago by Gutman and 

Trinajstić [19]. They are defined as: 
2

1
( )

( ) (d )v
v V G

M G


   and 2
( )

( ) d du v
uv E G

M G


  , 

where du and dv are the degrees of u and v.  

 

The connectivity index was introduced in 1975 by Milan Randić [20, 21] who has 

shown this index to reflect molecular branching. Randić index (Randić molecular 

connectivity index) was defined as follows: 

( )

1
( )

uv E G u v

G
d d

   . 

Another topological index namely, geometric – arithmetic index (GA) defined by 

Vukicević and Furtula [22] as follows: 

2 d d
( )

d d
u v

uv E

u v

GA G  


. 

Recently Furtula et al. [6] introduced atom-bond connectivity (ABC) index, which it 

has been applied up until now to study the stability of alkanes and the strain energy of 

cycloalkanes. This index is defined as follows: 

( )

d d 2
( )

d d
u v

e uv E G u u

ABC G
 

 
  . 

 In the following Theorem we compute these topological indices of nanostar 

dendrimers.  
 

Theorem 4. Consider nanostar dendrimer Dn, then  
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1
1

1
2

1

1

1

( ) 318 2 240,

( ) 384 2 327,

12
( ) (36 12 6)2 6 39,

5

( ) (27 2 8)2 9 2 18,

( ) (16 5 6)2 6 15.

n

n

n

n

n

M G

M G

GA G

ABC G

G











  

  

   

   

    

 

 

Proof. It is easy to see that this graph has 1| ( ) | 57 2 38n
nV D     vertices, 

1| ( ) | 33 2 45n
nE D     edges and the edge set of graph can be divided to three partitions, e. 

g. [e1], [e2] and [e3]. For every e = uv belong to [e1], du = dv =2. Similarly, for every e = uv 

belong to [e2], du = dv =3. Finally, if e = uv be an edge of [e3], then du = 2 and dv = 3. On 

the other hand, there are 124 2 12n  , 130 2 6n   and 112 2 27n   edges of type e1, e2 

and e3, respectively. By using the following table the proof is completed: 
 

Endpoints of Edges (2, 2) (2, 3) (3, 3) 

Number of Edges 124 2 12n   130 2 6n   112 2 27n   
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