Some New Results On the Hosoya Polynomial of Graph Operations

H. Mohamadinezhad-Rashti and H. Yousefi-Azari
School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, I. R. Iran

(Received 25 May, 2009)

Abstract

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who's derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959-969] attained what graph operations do to the Wiener polynomial. By considering all the results that Sagan et al. admitted for Wiener polynomial on graph operations for each two connected and nontrivial graphs, in this article we focus on deriving Wiener polynomial of graph operations, Join, Cartesian product, Composition, Disjunction and Symmetric difference on n graphs and Wiener indices of them.

Keywords: Wiener index, Wiener polynomial, graph operation.

1 INTRODUCTION

Let G be a connected graph with vertex and edge set, $V(G)$ and $E(G)$, respectively. The distance between the vertices u and v of G is denoted by $d(u, v)$ and defined as the number of edges in a minimal path connecting the vertices u and v. The Wiener index of G is defined as the summation of all distances over all unordered pairs $\{u, v\}$ of vertices of G.

The Wiener index W is the first topological index to be used in chemistry [15]. Usage of topological indices in chemistry began in 1947, when chemist Harold Wiener used the Wiener index to determine the paraffin boiling point [3]. For more information or results on the Wiener index, its polynomial version, the chemical meaning and its history, we encourage the interested readers to consult the special issues of MATCH Communication in Mathematics and in Computer Chemistry [3], Discrete Applied Mathematics [4] and survey article [2]. For the polynomial aspect of the Wiener and other topological indices, we refer to [1,6-14]. Our notation is standard and taken mainly from the book of Imrich and Klavzar [5].

2 DEFINITIONS

In this section the concepts used throughout the paper are presented. The Wiener polynomial of G is defined as $W(G ; q)=\sum_{\{u, v\} \subseteq V(G)} q^{d(u, v)}$, where q is a parameter. It is easy to see that the derivative of $\mathrm{W}(\mathrm{G} ; \mathrm{q})$ is a q -analog of $W(G)$.

The join $G_{1}+G_{2}$ of graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ is the graph with vertex $\operatorname{set} \mathrm{V}\left(\mathrm{G}_{1}+\mathrm{G}_{2}\right)=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$ and edge set $E\left(G_{1}+G_{2}\right)=E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}, v \in V_{2}\right\}$. For the other operations; Cartesian product, composition, disjunction and symmetric difference the vertex set is $V_{1} \times V_{2}$. The Cartesian product $G_{1} \times G_{2}$ has edge set $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right):\left(u_{1} v_{1} \in E_{1}\right.\right.$ and $\left.u_{2}=v_{2}\right)$ or $\left(u_{2} v_{2} \in E_{2}\right.$ and $\left.\left.u_{1}=v_{1}\right)\right\}$, the composition $G_{1} \circ G_{2}$ has the edge set $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right):\left(u_{1} v_{1} \in E_{1}\right)\right.$ or $\left(u_{2} v_{2} \in E_{2}\right.$ and $\left.\left.u_{1}=v_{1}\right)\right\}$, the edge set of disjunction $\mathrm{G}_{1} \vee \mathrm{G}_{2}$ is $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right):\left(u_{1} v_{1} \in E_{1}\right)\right.$ or $\left(u_{2} v_{2} \in E_{2}\right)$ or both $\}$ and the edge set for the symmetric difference $G_{1} \oplus G_{2}$ is $\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right): u_{1} v_{1} \in E_{1}\right.$ or $u_{2} v_{2} \in E_{2}$ but not both $\}$, see [5] for details. The ordered Wiener polynomial of G is denoted by $\bar{W}(G ; q)=\sum_{(u, v) \subseteq V(G)} q^{d(u, v)}$, where the sum is over all ordered pairs (u, v) of vertices, including those vertices that $u=v$. Thus

$$
\begin{equation*}
\bar{W}(G ; q)=2 W(G ; q)+|V(G)| \tag{1}
\end{equation*}
$$

Throughout this paper, we only consider connected graphs and let for graphs $G_{i}, 1$ $\leq \mathrm{i} \leq \mathrm{n},\left|V\left(G_{i}\right)\right|=n_{i}$ and $\left|E\left(G_{i}\right)\right|=k_{i}$. It will be convenient to have a variable for the nonedges in G_{i}, so let $\bar{k}_{i}=\frac{n_{i}\left(n_{i}-1\right)}{2}-k_{i}$. Also $\prod_{\mathrm{i} \in \phi}\left|\mathrm{A}_{\mathrm{i}}\right|=1$, where A_{i} is a set.

3 Main Results

In this section the Hosoya polynomials of some graph operations are computed.

Lemma 1.

1) If G_{l} and G_{2} be connected graphs then $G_{1}+G_{2}$ is connected.
2) The join is associative.
3) $\left|E\left(G_{1}+G_{2}\right)\right|=k_{1}+k_{2}+n_{1} n_{2}$
4) Let $G_{1}, G_{2}, \ldots, G_{m}$ be a graphs then

$$
\left|E\left(G_{1}+G_{2}+\ldots+G_{m}\right)\right|=\sum_{i=1}^{m} k_{i}+\sum_{i=2}^{m} n_{i} \sum_{j=1}^{i} n_{j} .
$$

Proof. The proof is straightforward and so omitted.
Theorem 1. Let $G_{1}, G_{2}, \ldots, G_{m}$ be connected graphs. Then we have

$$
W\left(G_{1}+G_{2}+\ldots+G_{m} ; q\right)=\left(\sum_{i=1}^{m} k_{i}+\sum_{i=2}^{m}\left(n_{i}\right) \sum_{j=1}^{i-1} n_{j}\right) q+\left(\sum_{i=1}^{m} \bar{k}_{i}\right) q^{2}
$$

Proof. Since distance for every distinct pair of vertices in $\mathrm{G}_{1}+\mathrm{G}_{2}$ is 1 or 2 by Lemma 1 the proof is clear.

In the following lemma, some well-known properties of Cartesian product are introduced.

Lemma 2. Suppose G_{1} and G_{2} are graphs with $\left|V\left(G_{1}\right)\right|=n_{1},\left|V\left(G_{2}\right)\right|=n_{2},\left|E\left(G_{1}\right)\right|=k_{1}$ and $\left|E\left(G_{2}\right)\right|=k_{2}$. Then the following are holds:

1) $G_{1} \times G_{2}$ is connected graphs if and only if G_{1} and G_{2} are connected.
2) The Cartesian product is associative and commutative.
3) $\left|E\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right)\right|=\mathrm{k}_{1} \mathrm{n}_{2}+\mathrm{k}_{2} \mathrm{n}_{1}$,
4) Suppose G_{1} and G_{2} are connected and nontrivial (not equal to K_{1}).Then

$$
\begin{equation*}
\bar{W}\left(G_{1} \times G_{2} ; q\right)=\bar{W}\left(G_{1} ; q\right) \cdot \bar{W}\left(G_{2} ; q\right) \tag{2}
\end{equation*}
$$

Proof. The proof for parts 1 and 3 are trivial and for parts 2 and 4 see [7] and [1], respectively.

Theorem 2. Let $G_{1}, G_{2}, \ldots, G_{m}$ be connected graphs then we have

$$
W\left(G_{1} \times G_{2} \times \ldots \times G_{m} ; q\right)=\frac{1}{2}\left[\prod_{i=1}^{m}\left[2 W\left(G_{i} ; q\right)+n_{i}\right]-\prod_{i=1}^{m} n_{i}\right]
$$

Proof. By using Lemma 2 part 4 and utilize relation (1) we have;

$$
\begin{aligned}
W\left(G_{1} \times G_{2} \times \ldots \times G_{m} ; q\right) & =\left(\bar{W}\left(G_{1} \times G_{2} \times \ldots \times G_{m} ; q\right)-\left|V\left(G_{1} \times G_{2} \times \ldots \times G_{m}\right)\right|\right) / 2 \\
& =\frac{1}{2}\left[\prod_{i=1}^{m}\left[2 W\left(G_{i} ; q\right)+n_{i}\right]-\prod_{i=1}^{m} n_{i}\right]
\end{aligned}
$$

Lemma 3. Let G_{1} and G_{2} be connected graphs then we have:

1) $\left|E\left(G_{1} \circ G_{2}\right)\right|=k_{1} n_{2}^{2}+k_{2} n_{1}$
2) $W\left(G_{1} \circ G_{2} ; q\right)=n_{1}\left(k_{2} q+\overline{k_{2}} q^{2}\right)+n_{2}^{2} W\left(G_{1} ; q\right)$

Proof. The proof of part 1 is clear. To prove part 2, we apply Lemma 2 of [10]. We have:

$$
d_{G_{1} \circ G_{2}}\left(\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right)= \begin{cases}d_{G_{1}}\left(u_{1}, u_{2}\right) & u_{1} \neq v_{1} \\ 0 & u_{1}=v_{1} \& u_{2}=v_{2} \\ 1 & u_{1}=v_{1} \& u_{2} v_{2} \in \mathrm{E}\left(G_{2}\right) \\ 2 & u_{1}=v_{1} \& u_{2} v_{2} \notin \mathrm{E}\left(G_{2}\right)\end{cases}
$$

Theorem 3. Let $G_{1}, G_{2}, \ldots, G_{m}$ be connected graphs then we have

$$
\begin{aligned}
W\left(G_{1} \circ G_{2} \circ \ldots \circ G_{m} ; q\right)= & \left(\prod_{i=1}^{m-1} n_{i}\right)\left(k_{m} q+\bar{k}_{m} q^{2}\right)+\left(\prod_{i=2}^{m} n_{i}^{2}\right) W\left(G_{1} ; q\right) \\
& +\sum_{l=2}^{m-1}\left[\left(\prod_{i=1}^{m-1} n_{i}\right)\left(\prod_{j=m-l+2}^{m} n_{j}^{2}\right)\left(k_{m-l+1} q+\overline{k_{m-l+1}} q^{2}\right)\right] . \text { for } m \geq 3
\end{aligned}
$$

Proof. The proof is by induction. The case $m=2$ is a consequence of Lemma 3. Suppose the result is valid for m graphs and we will prove its validity for $m+1$ graph. Let $G=G_{1} \circ G_{2} \circ \ldots \circ G_{m}$. Then by Lemma 3

$$
\begin{aligned}
& W\left(G \circ G_{m+1} ; q\right)=\left(\prod_{i=1}^{m} n_{i}\right)\left(k_{m+1} q+\overline{k_{m+1}} q^{2}\right)+n_{m+1}^{2} \cdot W(G ; q) \\
& =\left(\prod_{i=1}^{m} n_{i}\right) \cdot\left(k_{m+1} q+\overline{k_{m+1}} q^{2}\right)+n_{m+1}^{2} \cdot\left[\left(\prod_{i=1}^{m-1} n_{i}\right)\left(k_{m} q+\overline{k_{m}} q^{2}\right)+\sum_{l=2}^{m-1}\left(\prod_{i=1}^{m-1} n_{i}\right)\left(\prod_{j=m-l+2}^{m} n_{j}^{2}\right)\left(k_{m-l+1} q+\overline{k_{m-l+1}} q^{2}\right)\right. \\
& \left.+\left(\prod_{i=2}^{m} n_{i}^{2}\right) \cdot W\left(G_{1} ; q\right)\right]=\left(\prod_{i=1}^{m} n_{i}\right)\left(k_{m+1} q+\overline{k_{m+1}} q^{2}\right)+n_{m+1}^{2}\left(\prod_{i=1}^{m-1} n_{i}\right)\left(k_{m} q+\overline{k_{m}} q^{2}\right) \\
& +n_{m+1}^{2} \sum_{l=2}^{m-1}\left[\left(\prod_{i=1}^{m-1} n_{i}\right)\left(\prod_{j=m-l+2}^{m} n_{j}^{2}\right)\left(k_{m-l+1} q+\overline{k_{m-l+1}} q^{2}\right)\right]+\left(\prod_{i=2}^{m+1} n_{i}^{2}\right) W\left(G_{1} ; q\right) \\
& =\left(\prod_{i=1}^{m} n_{i}\right)\left(k_{m+1} q+\overline{k_{m+1}} q^{2}\right)+\left(\prod_{i=2}^{m+1} n_{i}^{2}\right) W\left(G_{1} ; q\right) \\
& \quad+\sum_{l=2}^{m}\left[\left(\prod_{i=1}^{m} n_{i}\right)\left(\prod_{j=m-l+3}^{m+1} n_{j}^{2}\right)\left(k_{m-l+2} q+\overline{k_{m-l+2}} q^{2}\right)\right] .
\end{aligned}
$$

Lemma 4. Let $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{m}}$ be graphs, then we have

1) If G_{1} and G_{2} are connected then $\mathrm{G}_{1} \vee \mathrm{G}_{2}$ and $G_{1} \oplus G_{2}$ are connected.
2) Let $G=G_{1} \oplus G_{2} \oplus \ldots \oplus G_{m}$ then we have $|E(G)|=\sum_{\phi \neq A \subseteq M}(-4)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}$
3) Let $G=G_{1} \vee G_{2} \vee \ldots \vee G_{m}$ then we have $|E(G)|=\sum_{\phi \neq A \subseteq M}(-2)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}$ where $M=\{1,2, \ldots, m\}$.

Proof. The proof of part 1 is clear. We prove part 2 by induction on m. For $m=2$ one can see $\left|E\left(G_{1} \oplus G_{2}\right)\right|=k_{1} n_{2}^{2}+k_{2} n_{1}^{2}-4 k_{1} k_{2}$. We now assume the result is valid for m and $H=G \oplus G_{m+1}$. So

$$
\begin{equation*}
|E(H)|=|E(G)| n_{m+1}^{2}+k_{m+1}|V(G)|^{2}-4|E(G)| k_{m+1} \tag{2}
\end{equation*}
$$

On the other hand we know $P(M \cup\{m+1\})=P(M) \cup\{\{m+1\} \cup A \mid A \subseteq M\}$
where $P(M)$ is the power set of M. Clearly, $\phi=P(M) \cap\{\{m+1\} \cup A \mid A \subseteq M\}$ and so

$$
\begin{aligned}
|E(H)| & =\sum_{\phi \neq A \subseteq M}(-4)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in(M \cup\{m+1\})-A} n_{i}^{2}+k_{m+1} \prod_{i \in M} n_{i}^{2}-4 k_{m+1} \sum_{\phi \neq A \subseteq M}(-4)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}= \\
& =\sum_{\phi \neq B \subseteq M \cup\{m+1\}}(-4)^{B \mid-1} \prod_{i \in B} k_{i} \prod_{i \in M \cup\{m+1\}-B} n_{i}^{2}
\end{aligned}
$$

The proof of part 3 is similar to the proof of part 2 .

Theorem 4. Let $G_{1}, G_{2}, \ldots, G_{m}$ be connected graphs then
and

$$
\begin{aligned}
W\left(G_{1} \vee G_{2} \vee \ldots \vee G_{m} ; q\right) & =\left[\sum_{\phi \neq A \subseteq M}(-2)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}\right] q \\
& +\left[\left(\begin{array}{c}
m \\
i=1 \\
2
\end{array}\right)-\sum_{\phi \neq A \subseteq M}(-2)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}\right] q^{2} . \\
W\left(G_{1} \oplus G_{2} \oplus \ldots \oplus G_{m} ; q\right)= & \left(\sum_{\phi \neq A \subseteq M}(-4)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}\right) q \\
& +\left(\left(\prod_{i=1}^{m} n_{i}\right)-\left(\sum_{\phi \neq A \subseteq M}(-4)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in M-A} n_{i}^{2}\right)\right) q^{2}
\end{aligned}
$$

Proof. Since distance between distinct vertices of graphs $G_{1} \oplus G_{2}$ and $G_{1} \vee G_{2}$ is 1 or 2, $W(G ; q)=|E(G)| q+|E(\bar{G})| q^{2}$. We now apply Lemma 4 to complete the proof.

We conclude this paper by computing the Wiener index of the operations on m graphs. We mentioned that the derivative of $W(G ; q)$ is q-analog of $W(G)$. By Theorem $[1,1.5], W^{\prime}(G ; 1)=W(G)$ and we have:

$$
\begin{aligned}
& W\left(G_{1}+G_{2}+\ldots+G_{m}\right)=\sum_{i=1}^{m} k_{i}+\sum_{i=2}^{m}\left(n_{i} \sum_{j=1}^{m} n_{j}\right)+2 \sum_{i=1}^{m} k_{i} \\
& \begin{aligned}
& W\left(G_{1} \times G_{2} \times \ldots \times G_{m}\right)= \sum_{i=1}^{m}\left(W\left(G_{i}\right) \prod_{\substack{j=1 \\
j \neq i}}^{m} n_{j}^{2}\right) \\
& W\left(G_{1} \circ G_{2} \circ \ldots \circ G_{m}\right)=\left(\prod_{i=1}^{m-1} n_{i}\right)\left(k_{m}+2 \overline{k_{m}}\right)+\sum_{l=2}^{m-1}\left[\left(\prod_{i=1}^{m-1} n_{i}\right)\left(\prod_{j=m-l+2}^{m} n_{j}^{2}\right)\left(k_{m-l+1}+2 \overline{k_{m-l+1}}\right)\right] \\
&+\left(\prod_{i=2}^{m} n_{j}^{2}\right) W\left(G_{1}\right) \\
& \text { for } m \geq 3
\end{aligned} \\
& W\left(G_{1} \vee G_{2} \vee \ldots \vee G_{m}\right)=2\left(\prod_{i=1}^{m} n_{i}\right)-\sum_{\phi \neq A \subseteq M}(-2)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in A^{c}} n_{i}^{2} \quad \text { where } M=\{1,2, \ldots, m\} \\
& W\left(G_{1} \oplus G_{2} \oplus \ldots \oplus G_{m}\right)=2\left(\prod_{i=1}^{m} n_{i}\right)-\sum_{\phi \neq A \subseteq M}(-4)^{|A|-1} \prod_{i \in A} k_{i} \prod_{i \in A^{c}} n_{i}^{2} \quad \text { where } M=\{1,2, \ldots, m\} .
\end{aligned}
$$

REFERENCES

1. A. R. Ashrafi, B. Manoochehrian and H. Yousefi-Azari, On the PI polynomial of a graph, Util. Math., 71 (2006), 97-108.
2. A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math., 66 (2001), 211-249.
3. I. Gutman, S. Klavzar and B. Mohar, Fifty Years of the Wiener Index, MATCH Commun. Math. Comput. Chem., 35 (1997), 1-259.
4. I. Gutman, S. Klavzar and B. Mohar, Fiftieth Anniversary of the Wiener Index, Discrete Appl. Math., 80 (1) (1997), 1-113.
5. W. Imrich and S. Klavzar, Product Graphs, John Wiley \& Sons, New York, 2000.
6. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157(4) (2009), 804-811.
7. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin., 30(5) (2009), 1149-1163.
8. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, Linear Algebra Appl., 429 (11-12) (2008), 2702-2709.
9. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The hyper-Wiener index of graph operations, Comput. Math. Appl., 56 (5) (2008), 1402-1407.
10. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math., 156 (10) (2008), 1780-1789.
11. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and I. Gutman, The edge Szeged index of product graphs, Croat. Chem. Acta, 81 (2) (2008), 277-281.
12. S. Klavzar, A .Rajpakse and I. Gutman, The Szeged and Wiener index of graphs, Appl. Math. Lett., 9 (1996) 45-49.
13. B. Manoochehrian, H. Yousefi-Azari and A. R. Ashrafi, MATCH Commun. Math. Comput. Chem., 57 (2007), 653-664.
14. B. E. Sagan, Y. N. Yeh and P. Zhang, The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959-969.
15. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69 (1947), 17-20.
