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                  ABSTRACT 
   

The aim of this paper is to study the high order difference scheme for the solution of a 

fractional partial differential equation (PDE) in the electroanalytical chemistry. The space 

fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we 

discretize the space derivative with a fourth-order compact scheme and use the Grunwald- 

Letnikov discretization of the Riemann-Liouville derivative to obtain a fully discrete implicit 

scheme and analyze the solvability, stability and convergence of proposed scheme using the 

Fourier method. The convergence order of method is O(τ + ). Numerical examples 

demonstrate the theoretical results and high accuracy of proposed scheme. 

Keywords: Electroanalytical chemistry, reaction-sub-diffusion, compact finite difference, 

Fourier analysis, solvability, unconditional stability, convergence. 

 

1. INTRODUCTION 

In recent years there has been a growing interest in the field of fractional calculus [6, 16, 

22, 26]. Fractional differential equations have attracted increasing attention because they 

have applications in various fields of science and engineering [4]. Many phenomena in 

fluid mechanics, viscoelasticity, chemistry, physics, finance and other sciences can be 

described very successfully by models using mathematical tools from fractional calculus, 

i.e., the theory of derivatives and integrals of fractional order. Some of the most 

applications are given in the book of Oldham and Spanier [19] and the papers of Metzler 

and Klafter [15], Bagley and Trovik [1]. Many considerable works on the theoretical 
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analysis [5, 25] have been carried on, but analytic solutions of most fractional differential 

equations cannot be obtained explicitly. So many authors have resorted to numerical 

solution strategies based on convergence and stability analysis[4, 10, 13, 24]. Liu has 

carried on so many work on the finite difference method of fractional differential equations 

[14, 11, 12]. There are several definitions of a fractional derivative of order 0  [22, 19].  

The two most commonly used are the Riemann-Liouville and Caputo. The difference 

between two definitions is in the order of evaluation [18]. We start with recalling the 

essentials of the fractional calculus. The fractional calculus is a name for the theory of 

integrals and derivatives of arbitrary order, which unifies and generalizes the notions of 

integer-order differentiation and n-fold integration. We give some basic definitions  and 

properties of the fractional calculus theory.  

Definition 1.   For      and x  0, a real function )(xf , is said to be in the space C  if   

there exists a real number p   such that 
1( ) ( ),pf x x f x  where 1( ) (0, ),f x C   and 

for  m   it is said to be in the space 
mC   if  .mf C 

 

Definition 2.  The Riemann-Liouville fractional integral operator of order   0 for a 

function  f (x)  C  ,  ≥ -1 is defined as 
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Definition 3.  If m be the smallest integer that exceeds , the Caputo Riemann-Liouville 

fractional derivatives operator of order  1 is defined as,  respectively, 
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Due mainly to the works of Oldham and his co-authors [7, 8, 9, 20, 21], electrochemistry is 

one of those fields in which fractional-order integrals and derivatives have a strong position 

and bring practical results. Although the idea of using a half-order fractional integral of 

current, 0Dt
-1/2

i(t), can be found also in the works of other authors, it was the paper by 

Oldham [20] which definitely opened a new direction in the methods of electrochemistry 

called semi-integral electroanalysis. One of the important subjects for study in 

electrochemistry in the determination of the concentration of analyzed electroactive species 

near the electrode surface. The method suggested by Oldham and Spanier [21] allows, 

under certain conditions, replacement of a problem for the diffusion equation by a 

relationship on the boundary (electrode surface). Based on this idea, Old ham [20] 

suggested the utilization in experiment the characteristec described by the function 

1

2
0( ) ( )tm t D i t



  

which is the fractional integral of the current , as the observed function, whose values 

can be obtained by measurements. Then the subject of main interest, the surface 

concentration Cs(t) of the electroactive species, can be evaluated as 

 ),()( 2

1

00 tiDkCtC ts
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                                    (1.3)  

where k is a certain constant described below, and C0 is the uniform concentration of the 

electroactive species throughout the electrolytic medium at the initial equilibrium situation 

characterized by a constant potential, at which no electrochemical reaction of the 

considered species in possible. The relationship (1.3) was obtained by considering the 

following problem for a classical diffusion equation [9] 
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Where D   is diffusion coefficient.  A  is the electrode area, F is Faraday's constant and  

is the number of electrons involved in the  reaction, the constant  in (1.3) is expressed as 

.
1




DAFn

k  

Instead of the classical diffusion equation (1.4), it is possible to consider the fractional 

order diffusion equation [23] 

                                ,
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where 0 1  .  In this paper, we consider the generalized form of the Eq. (1.5) with the 

nonlinear source term and on a bounded domain with the following form 
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The boundary and initial conditions are 

 1 2(0, ) ( ), ( , ) ( ), 0 ,u t t u L t t t T                                       (1.7) 

 ( ,0) ( ), 0 .u x x x L                                                              (1.8) 

where 1 20 1, 0, 0       and the source term 1( , , ) [0, ].f u x t C L  The symbol 

1

0 tD   is the Riemann-Liouville fractional derivative operator and is defined as 
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Where (.)  is the gamma function. Also,  let ( , , )f u x t  satisfies the Lipschitz condition 

with respect to : 

uuuutxuftxuf ~,,~),,~(),,(    

where   is the Lipschitz constant.  The aim of this paper is to propose a numerical scheme 

of order 4( )h O  for the solution of Eq. (1.6). We apply a fourth order difference scheme 

for discretizing the spatial derivative and Grunwald-Letnikov discretization for the 

Riemann-Liouville fractional derivative. We will discuss the stability of proposed method 

is a by the Fourier method and show that the compact finite difference scheme converges 
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with the spatial accuracy of fourth order using matrix analysis. The outline of this paper is 

as follows. In Section 2, we introduce the derivation of new method for the solution of Eq. 

(1.6). This scheme is based on approximating the time derivative of mentioned equation by 

a scheme of order ( )O  and spatial derivative with a fourth order compact finite difference 

scheme. In this section we obtain the matrix form of the proposed method and show the 

solvability of it. In Section 3 we prove the unconditional stability property of method. In 

Section 4 we present the convergence of method and show that the convergence order is 
4( )h O .  In Section 5 we report the numerical experiments of solving Eq. (1.1) with the 

method developed in this paper for several test problems. Finally concluding remarks are 

drawn in Section 6. 

 

2.  DERIVATION  OF  METHOD 

For positive integer numbers  and , let h=L/M  denotes the step size of spatial 

variable, ,  and τ = T / N  denotes the step size of time variable, . So we define 

 

, 0,1,2,..., ,

, 0,1,2,..., .
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x jh j M

t k k N
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 

 

The exact and approximate solutions at the point ( , )j kx t  are denoted by 
k

ju  and  
k

jU   

respectively. We first state the fourth-order compact scheme of second derivative in the 

following lemma. 

 

Lemma 1([4]).  The fourth-order compact difference operator with maintaining three point 

stencil to approximate the  xxu is  
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in which 2

1 1( 2 ).x j j j ju u u u      

Now using the relationship between the Grunwald-Letnikov formula and the Riemann- 

Liouville fractional derivative, we can write  
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Since ( , , )f u x t  has the first order continuous derivative it follows that  
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From Eq. (2.4) and above results, we can obtain 
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By omitting the small term 
k

jR ,   the implicit compact difference scheme for (1.6)-

(1.8) is given as follows: 
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 Now we denote the solution vector of order  at kt t  by 

1 1( ) ( , , )k k k T

k Mt U U   U U .  We can give the matrix-vector form of (2.7) by 
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where  
1 2 3 ( 1) ( 1)[ ] M Mtri a a a   

  denotes a  ( 1) ( 1)M M    tri-diagonal matrix. Each row of 

this matrix contains the values  1 2,a a   and  3a   on its sub-diagonal, diagonal and super 

diagonal, respectively. We can state the solvability of proposed scheme in the following 

theorem. 

 

Theorem 1.   The compact difference scheme (2.7) has a unique solution. 

Proof. For any possible values of 1 2,   and    the coefficient matrix  is strictly diagonal 

dominant so it is nonsingular. Consequently the difference scheme (2.7) has a unique 

solution. 
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3.        STABILITY OF PROPOSED METHOD 

In the section we will analyze the stability of the finite difference scheme (2.7) by using the 

Fourier analysis. For x = ( x1, x2, …, x-1)
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
















 









(3.1) 

with 

 0 0.k k

M    

in which  ),,
~

(
~

1
11


  kj

k
j

k
j txUff   We define the grid function  

 

,
2 2

( )

0 0 .
2 2

k

j j j

k

h h
x x x

x

h h
x or L x L






   


 

     


 

We can expand the  ( )k x   in a Fourier series [5] 

 2 /( ) ( ) , 1,2, , ,k i lx L

k

l

x d l e k N




    
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where  

 2 /

0

1
( ) ( ) .

L
k i lx L

kd l x e dx
L

   

Also we introduce the following norm 

.)(
2

1

0

22

1

21

12 
















 





L
k

M

j

k

j

k dxxh   

By applying the Parseval equality 

,)()(
2

0

2







l

k

L
k lddxx  

we obtain 

             .)(
22

2






l

k

k ld                                             (3.2) 

Now we can suppose that the solution of equation (3.1) has the following form 

 ,k i jh

j kd e    

where  
2 l

L


  .  Substituting the above expression into (3.1) and putting  h  ,  we 

obtain 

 
















 




k

l

k
j

k
jxklk ffdd

2

2
1

~

12

1
1

1





                    (3.3) 

where 

 

2 2 22
1 2

2 2 21 2
1 1 1 2

2 22
1 2

1 2 2
cos 4 sin cos ,

3 2 2 3 2 3 3

1 2 2
ˆ cos 4 sin cos ,

3 2 2 3 2 3 3

2
4 sin cos .

2 3 2 3

  
  

   
    

 
  

    

    

   

                 (3.4) 
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Lemma 2([14]).   The coefficients l  satisfy 

0 1

0 1

(1) 1, 1, 0, 1,2, ,

(2) 0, 1, .

l

n

l l

l l

l

n N

   

 


 

     

     

 

Lemma 3.     The coefficient    in (3.4) satisfies in 
1

0 3


  . 

Proof. Since 1  and  2  are positive so from (3.4) we can write  

2 2 2

1 2 21 3 cos 12 sin cos 2 2,
2 2 2

  
          

which gives  
1

0 3.


    

Proposition 1.   Suppose that (1 )kd k N   are defined by (3.3), then we have 

.,..,.2,1,)31( 0 NkdLd k
k    

Proof. We will use mathematical induction to complete the proof. For  1k  ,  from (3.3) 

and using Lemma 3 we can write 

.)31(
ˆ

12

1
1ˆ

1

~

12

1
1ˆ

1

~

12

1
1ˆ

1

00

0
2

0

002
0

002
01

dLd
L

edLed

UULed

ffedd

ijij
x

jj
ij

x

jj
ij

x




























 
































































 

Now suppose 

.1,...,2,1,)31( 0  kndLd n

n   
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From (3.3) and induction hypothesis, we can write 


























  









112
2

0

10 ~

12

1
1

1
ˆ)31( k

j

k

j

ij

x

k

l
lk

k

k ffeL
d

d 





 
































 





  k

j
k
j

ij
x

k

l

lk
k UULeL

d ~

12

1
1

1
)(ˆ)31( 2

1

1

0

10 





 































 




  





ij
k

ij
x

k

l

l
k edLeL

d
1

2
1

1

10

12

1
1

1
)(ˆ)31(  

 


LL
d k   ))1(1(ˆ)31( 10

 

,)31( 0dL k   

which completes the proof. 

 

Theorem 2.  The compact difference scheme (2.7) is unconditionally stable for any 

0 1  . 

Proof. Applying Proposition 1 and  Parseval's equality, we obtain 

,
~

)31(

~

1

1

2
003

2
03

2

0

1

1

32
0

1

1

2
21

1

21

1

22

22

22





























M

j
l

LT

l

LTjhi
M

j

Lkk

M

j
k

M

j

jhi
k

M

j

k
j

l

k

l

kk

UUeeedehdLh

dhedhhUU









 

which means that the scheme (2.7) is unconditionally stable. 

 

4. CONVERGENCE OF PROPOSED METHOD 

In this section we prove that difference scheme (2.5) converges with the spatial accuracy of 

fourth order. We need some lemmas and theorems that will be expressed. 
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Lemma 4([2]). Regarding to the definitions of  
l ,  we have 

1

0

1
( ).

( )

k

l

l

  






 


 O  

On the basis (2.6) and Lemma 4, we have 

 

 2 2 4

1

0

2 4 1

1

0

2 4 2 4

1

1
( ) 1 ( )

12

( ) ( )

1
( ) ( ) ( ) ( ),

( )

k
k

j x l

l

k

l

l

R h

h

h h





    

    

     








 
   

 

 

 
     

 





O O

O O

O O O O

                           (4.1) 

so from (4.1), we can obtain 

2 4( ),

1,2, , , 1,2, , ,

k

jR O h

k N j M

  

   

 

therefore, there is a positive constant  1C ,  such that [3] 

2 4

1( ).k

jR C h                                                           (4.2) 

Similar to the stability analysis in Section 3, we define the grid functions [3] 

when , 1,2, , 1,
2 2

( )

0 when 0 ,
2 2

k

j j j

k

h h
e x x x j M

e x

h h
x or L x L


      


 

     


 

and 
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when , 1,2, , 1,
2 2

( )

0 when 0 ,
2 2

k

j j j

k

h h
R x x x j M

R x

h h
x or L x L


      


 

     


 

Thus ( )ke x   and  ( )kR x   have the following Fourier series expansions 

2

( ) ( ) , 0,1, , ,
i lx

k L
k

l

e x l e k N







    

2

( ) ( ) , 0,1, , ,
i lx

k L
k

l

R x l e k N







    

where 

2

0

1
( ) ( ) , 0,1, , ,

L i lx

k L
k l e x e dx k N

L






    

2

0

1
( ) ( ) , 0,1, , .

L i lx

k L
k l R x e dx k N

L






    

Now, we define the following notations [3] 

 

( , ) ,

1,2, , , 1,2, , ,

k k k k

j j k j j je u x t U u U

k N j M

   

   

                                       (4.3) 

1 2 1 1 2 1, , , , , , , , 1,2, , ,k k k k k k k k

M Me e e e R R R R k N 
             

and introduce the following norms 

 

11

1 222 2

2
1 0

( ) , 0,1, , ,

LM
k k

j

j

e h e e x dx k N




  
      
   
                       (4.4) 
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11

1 222 2

2
1 0

( ) , 0,1, , .

LM
k k

j

j

R h R R x dx k N




  
      
   
                           (4.5) 

Using the Parseval equality 

  




L

l

x
k Nkldxe

k

0

22
,,,1,0,)()(   

and 

2 2

0

( ) ( ) , 0,1, , ,

L

k

k

l

R x dx l k N




    

we also have 

 
2 2

2
( ) , 0,1, , ,k

k

l

e l k N




  
 

                                  (4.6) 

 
2 2

2
( ) , 0,1, , .k

k

l

R l k N




                                      (4.7) 

From (2.6), we obtain that 

 

2 2 1 2

1

0

2 2 1

2

0

1 1
1 1

12 12

1 1
1 1

12 12

1,2, , , 1,2, , ,

k
k k k l

x j x j l x j

l

k
k l k k

l x j x j j

l

u u u

u f R

k N j M

    

    

 



 



   
      

   

   
       

   

   



                             (4.8) 

where ( , )k

j j ku u x t  and   
1 1

1( , , )k k

j j j kf f u x t 

 .   Subtracting (2.7) from (4.8), leads to 
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2 2 1 2

1

0

2 2 1

2

0

0

0

1 1
1 1

12 12

1 1
1 1

12 12

0, 0, 1,2, , , , 1,2, , .

k
k k k l

x j x j l x j

l

k
k l k k

l x j x j j

l

k k

M j

e e e

e f R

e e e k N j M

   

    

 



 



   
      

   



   
           



       




                         (4.9) 

Now we assume that  
k

je  and  
k

jR  are   

 

( )

( )

,

,

k i jh

j k

k i jh

j k

e e

R e













 

where 
2l

L


  .  Substituting the above relations into (4.9) results 

 

 2

2

1 1
ˆ 1 ,

12

1,2, , .

k
ij k k

k l k l x j j k

l

e f f

k N

      








  
       

  

 



                        (4.10) 

Notice that 0 0e   and  we have 

 0 0( ) 0.l    

 In addition, from the left hand equality of (4.5) and (4.2), we obtain [3] 

    2 4 2 4

1 12
.kR MhC h C L h                                                 (4.11) 

Also from convergence of the series in the right hand side of (4.7), there is a positive 

constant  2C  such that [3] 

 .,,2,1,)()( 1212 NknLCLCnkk                          (4.12) 

Proposition 2.  If   ( 1,2, , )k k N    be the solutions of equation (4.10), then there is a 

positive constant  2C  such that 

 2 11 3 , 1,2, , .
k

k C k L k N       
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Proof. We use the mathematical induction for proof. Firstly, from (4.10) and (4.12) we 

have 

 

.)31(33
1

1212121211 






 LCLCLCLC   

 

Now, suppose that 

1,,2,1,)31( 12  knLnC n
n   

 

From Lemma 2 and noticing that  ˆ 0   we have,  

 

.)31(

)31(
ˆ

)31()1(

)31(ˆ)31(
)1(

)31(ˆ)31(
)1(

3ˆ)31(
)1(
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1
1

1

ˆ)31(
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1

2
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1211

1
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1211

1

0

12
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2

1

2

0
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
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
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
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













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kk

kk

k
k

l

l
k

k
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k

k

j
k
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k

l
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k

k
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L
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LCffe

L
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





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

 
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


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




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
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


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


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
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














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















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Theorem 3.  Suppose  ( , )u x t  is the exact solution of the Eq. (1.6), then the compact finite  

difference scheme (2.7) is 2L -convergent with convergence order  4( )h O . 

 

Proof.  By considering Proposition 2 and noticing (4.6), (4.7) and (4.11), we can obtain 

.)()31( 43
21

2

1
2

2
hekCLCRLkCe kLkk     
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Since   k T  ,   we  have 

  4

2

ke h C  

in which 

 
3

1 2 ,TC C T Le LC  

and this completes the proof. 

5. NUMERICAL RESULTS 

In this section we present the numerical results of the new method on several test problems. 

We tested the accuracy and stability of the method described in this paper by performing 

the mentioned scheme for different values of h and   . We performed our computations 

using Matlab 7 software on a Pentium IV, 2800 MHz CPU machine with 2 Gbyte of 

memory. We calculated the computational orders of the method presented in this article in 

time variable with [17, 24] 

1 2

(2 , )
C -order log ,

( , )

L h

L h









 
   

 

 

and in space variables with [4] 

2 2

(16 ,2 )
C -order log .

( , )

L h

L h









 
   

   
5.1   Test problem 1. 

We consider the fractional linear PDE 

   

2
1

0 2

( , ) ( , )
( , ) (1 ) ,x

t

u x t u x t
D u x t e t

t x

    
    

  
                            (5.1) 

with boundary and initial conditions 
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1 1

0

0

, , 1,2, , ,

0, 1,2, , .

k k L

M

j

u t u e t k N

u j M

     

  

                                            (5.2) 

Then, the exact solution of (5.1), (5.2) is 

1( , ) .xu x t e t   

We solve this problem with the method presented in this article with several values of ,  

and     for  at final time . The  L error, 1C -order,  2C -order  and CPU 

time (s) of applied method are shown in Tables 1,2. 

 

 

 

Table 1. Errors and computational orders obtained for test problem 1 with                               

                                                       

                                                                         CPU time(s)                         

1/10                    _                                _                    00.1570          

1/20               1.0617                       1.0179                00.2029     

1/40               1.0522                       1.0111                00.3599     

1/80               1.0445                       1.0070                01.0000      

1/160             1.0382                       1.0044               03.5620         

1/320             1.0328                       1.0029               12.9840         

1/640             1.0281                       1.0011               49.2340          

 

Tables 1,2 show that the computational orders are close to theoretical orders, i.e the order of 

method is ( )O  in time variable and 4( )hO  in space variables. Figure 1 shows the plots of 

error and approximate solution of this test problem with 1/ 50, 1/100h    and  0.55  . 
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Figure 1.  Error (Right Panel) and Approximate Solution (Left Panel) Obtained for Test 

Problem 1 with 1/ 50, 1/100h    and  0.55  . 
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Table 2. Errors and computational orders obtained for test problem 1. 

                                                                                             

                                                                                                                        

                                     _                                   _                              

                           4.1652                      4.0044                        

                    4.1167                       3.9903                        

             _                                  _                        

                      4.1402                       3.9925                       

                     4.1227                       4.0000                        

          

5.2  Test problem 2. 

We consider the fractional PDE with the nonlinear source term 

2
1

0 2

1
3 2 6 2

( , ) ( , )
( , )

2
( , ) cos( ) 2 ( 1) cos ( ) ,

(2 )

t

u x t u x t
D u x t

t x

t
u x t x t t x





  






  
  

  

 
     

  

 

with boundary and initial conditions  

2 2

0

0

, cos( ), 1,2, , ,

0, 1,2, , .

k k

M

j

u t u t L k N

u j M

   

  

 

where, the exact solution is 

 2( , ) cos( ).u x t t x  
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We solve this problem with the method presented in this article with several values of  

,h    and   for  1L    at final time 1T  .  The L  error, 1C -order,  2C -order   and CPU 

time (s) of applied method are shown in Tables 3, 4. 

 

Table 3. Errors and computational orders obtained for test problem 2 with . 

                                                           

                                                                          CPU time(s)                         

1/10                   _                             _                      00.1250 

1/20              0.9758                  0.9682                00.1879 

1/40              0.9880                   0.9844                00.4070 

1/80              0.9942                   0.9923                00.8279 

1/160            0.9974                  0.9965                02.9059 

1/320            0.9993                      0.9988                10.5940 

1/640            1.0008                   1.0003                41.3440 

   

Tables 3, 4 show that the computational orders are close to theoretical orders, i.e the  order 

of method is ( )O  in time variable and 4( )hO  in space variables. Figure 1 shows the plots 

of error and approximate solution of this test problem with 1/ 32, 1/100h    and  

0.45   
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Figure 2. Error (Right Panel) and Approximate Solution (Left Panel) Obtained for Test 

Problem 2 with h = 1/32,  = 1/100 and  γ = 0.45. 
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 Table 4. Errors and computational orders obtained for test problem 2.  

                                                                                         

                                                                                                                           

                                      _                                  _                             

                           3.9094                        3.8537                       

                    3.9942                      3.9913                       

               _                                 _                       

                      3.9540                         3.9284                      

                       3.9716                             3.9702  

          

 

 

6.  CONCLUSION 
 

In this article, we constructed a compact difference scheme for the solution of a fractional 

nonlinear PDE in the electroanalytical chemistry. This compact difference scheme has the 

advantage of high accuracy and unconditional stability which we proved it using the 

Fourier analysis. Also we show that the proposed compact finite difference scheme 

converges with the spatial accuracy of fourth-order. Numerical results confirmed the 

theoretical results of proposed method. 
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