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ABSTRACT

The aim of this paper is to study the high order difference scheme for the solution of a
fractional partial differential equation (PDE) in the electroanalytical chemistry. The space
fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we
discretize the space derivative with a fourth-order compact scheme and use the Grunwald-
Letnikov discretization of the Riemann-Liouville derivative to obtain a fully discrete implicit
scheme and analyze the solvability, stability and convergence of proposed scheme using the
Fourier method. The convergence order of method is O(t + h*). Numerical examples

demonstrate the theoretical results and high accuracy of proposed scheme.

Keywords: Electroanalytical chemistry, reaction-sub-diffusion, compact finite difference,
Fourier analysis, solvability, unconditional stability, convergence.

1. INTRODUCTION

In recent years there has been a growing interest in the field of fractional calculus [6, 16,
22, 26]. Fractional differential equations have attracted increasing attention because they
have applications in various fields of science and engineering [4]. Many phenomena in
fluid mechanics, viscoelasticity, chemistry, physics, finance and other sciences can be
described very successfully by models using mathematical tools from fractional calculus,
i.e., the theory of derivatives and integrals of fractional order. Some of the most
applications are given in the book of Oldham and Spanier [19] and the papers of Metzler
and Klafter [15], Bagley and Trovik [1]. Many considerable works on the theoretical
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analysis [5, 25] have been carried on, but analytic solutions of most fractional differential
equations cannot be obtained explicitly. So many authors have resorted to numerical
solution strategies based on convergence and stability analysis[4, 10, 13, 24]. Liu has
carried on so many work on the finite difference method of fractional differential equations
[14, 11, 12]. There are several definitions of a fractional derivative of order « >0 [22, 19].
The two most commonly used are the Riemann-Liouville and Caputo. The difference
between two definitions is in the order of evaluation [18]. We start with recalling the
essentials of the fractional calculus. The fractional calculus is a name for the theory of
integrals and derivatives of arbitrary order, which unifies and generalizes the notions of
integer-order differentiation and n-fold integration. We give some basic definitions and
properties of the fractional calculus theory.

Definition 1. For e % and x> 0, a real function f(X), is said to be in the space C,, if
there exists a real number p > & such that f (x)=x"f,(x), where f (x)eC (0,), and

for m e Nitis said to be in the space C} if f" eC .

Definition 2. The Riemann-Liouville fractional integral operator of order o > 0 for a
function f(x) € C, , u>-1is defined as

3% (x) —Fi)zx O ()dt,  a>0,x >0, I (x)=f (x).

Also we have the following properties
«J?IPF (x)=J"PF (x),
«J?IPF (x)=37J°F (x),

I'(y+1)
IN'a+y+1)

.Jaxyz a+y

Definition 3. If m be the smallest integer that exceeds o, the Caputo Riemann-Liouville
fractional derivatives operator of order o >1 is defined as, respectively,

SN T(X—t) m’“’ldm—fm(x) . dt, m=1L(a(m, meN
¢ D f(x)={ L (M=o dx" - x=t (L.1)
d"f(x) »

dx™
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d™ 1 % m-a-1
————— [(x-)" T f()dt ,m-1(a(m, meN
oD 1(=] ¥ TN~ (12)
d™ f(x)
- m=a.
dx™

Due mainly to the works of Oldham and his co-authors [7, 8, 9, 20, 21], electrochemistry is
one of those fields in which fractional-order integrals and derivatives have a strong position
and bring practical results. Although the idea of using a half-order fractional integral of
current, oD Y2i(t), can be found also in the works of other authors, it was the paper by
Oldham [20] which definitely opened a new direction in the methods of electrochemistry
called semi-integral electroanalysis. One of the important subjects for study in
electrochemistry in the determination of the concentration of analyzed electroactive species
near the electrode surface. The method suggested by Oldham and Spanier [21] allows,
under certain conditions, replacement of a problem for the diffusion equation by a
relationship on the boundary (electrode surface). Based on this idea, Old ham [20]
suggested the utilization in experiment the characteristec described by the function

1
m(t) ) Dt d (t)
which is the fractional integral of the current i(t), as the observed function, whose values

can be obtained by measurements. Then the subject of main interest, the surface

concentration Cs(t) of the electroactive species, can be evaluated as
1

Cs (1)=Co —ko Dy 2i (1), (1.3)
where Kk is a certain constant described below, and Cq is the uniform concentration of the
electroactive species throughout the electrolytic medium at the initial equilibrium situation
characterized by a constant potential, at which no electrochemical reaction of the
considered species in possible. The relationship (1.3) was obtained by considering the
following problem for a classical diffusion equation [9]

GC(X,t):D 82C(X!t) 0(x(o, t)0
ot x| ’ '

C(%,0)=C,, C(x,0)=C,, (1.4)

D{&C(x,t)} i
ot |, nAF
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Where D, is diffusion coefficient. A is the electrode area, F is Faraday's constant and n
is the number of electrons involved in the reaction, the constant k in (1.3) is expressed as

1
nAF. /D,

Instead of the classical diffusion equation (1.4), it is possible to consider the fractional
order diffusion equation [23]

k

oC(x,t) | 8%Cc(x,1)
ot :ODty{ ox2 } 49

where 0< y <1. In this paper, we consider the generalized form of the Eq. (1.5) with the
nonlinear source term and on a bounded domain with the following form

ou (Xat) _ th17|:K1 %_ K‘ZU(X,t):|+ f (U (X,t) ) X,t),

(1.6)
0<x<L, 0<t<T,
The boundary and initial conditions are
u@t)=g¢t), u(L,t)=¢,t), O<t<T, 1.7)
u(x,0)=w(x), 0O<x <L. (1.8)

where 0<y <1, x>0, x,>0 and the source term f (u,x,t)eC*[0,L]. The symbol

,D,7 is the Riemann-Liouville fractional derivative operator and is defined as

~ 1 8¢ ulx,n)
D7 1) = — dn,
0"t u (X ) 1_,(}/) Bt '([(t _77)1_7, n

Where T'(.) is the gamma function. Also, let f (u,x,t) satisfies the Lipschitz condition
with respect to wu:

| (@, x,t)-f@U,xt)|<e|a-u], va,u
where ¢ is the Lipschitz constant. The aim of this paper is to propose a numerical scheme
of order O(z+h*) for the solution of Eq. (1.6). We apply a fourth order difference scheme

for discretizing the spatial derivative and Grunwald-Letnikov discretization for the
Riemann-Liouville fractional derivative. We will discuss the stability of proposed method
is a by the Fourier method and show that the compact finite difference scheme converges
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with the spatial accuracy of fourth order using matrix analysis. The outline of this paper is
as follows. In Section 2, we introduce the derivation of new method for the solution of Eq.
(1.6). This scheme is based on approximating the time derivative of mentioned equation by
a scheme of order O (z) and spatial derivative with a fourth order compact finite difference

scheme. In this section we obtain the matrix form of the proposed method and show the
solvability of it. In Section 3 we prove the unconditional stability property of method. In
Section 4 we present the convergence of method and show that the convergence order is

O(z+h*). In Section 5 we report the numerical experiments of solving Eq. (1.1) with the

method developed in this paper for several test problems. Finally concluding remarks are
drawn in Section 6.

2. DERIVATION OF METHOD

For positive integer numbers M and N, let h=L/M denotes the step size of spatial
variable, x, and t=T /N denotes the step size of time variable, t. So we define
X. =]h , 1=012,...M,

t, =k , k=012,..,N.

The exact and approximate solutions at the point (x;,t,) are denoted by u}< and U}<

respectively. We first state the fourth-order compact scheme of second derivative in the
following lemma.

Lemma 1([4]). The fourth-order compact difference operator with maintaining three point
stencil to approximate the u,, is

52 aul' 1 ol

£ uf =—| - | h*+0(h®), (2.1)
hz(“léz) ox?| 2400x"|

12°7%

; ; 2
inwhich s;u; =, —2u; +u;,,).

Now using the relationship between the Grunwald-Letnikov formula and the Riemann-
Liouville fractional derivative, we can write
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[t/z]
oDI7f (1) = T% 2 a0t t-ko)+0(c"), (22)

k=0

Where o7 k are the coefficients of the generating function, that is,

o(z,a) = of7" We will discuss the case for w(z,a)=(1—z)“ and thus p=1. In
k =0

this case the coefficients are @ =1 and @ = (~1)" (0‘]:(_1)k al@-1)...(a-k+1) for
° k k!

k >1 and can be evaluated recursively,

a)o‘“’zl, wk(a):( _O‘Tﬂ)wﬁ, k>1. (2.3)

Now, we put
A =af =(-1) ﬁ_yj, 1=04,...k.
So 4, =1. If we consider Eq. (1.6)-(1.8) at the point (x;,t, ), we can write

8“ (X] ,tk )
ot

1y azu (XJ ’tk)
=(Dt") Klax—z_’fzu(xj’tk) +FU(x),t) X ,t).  (24)
Since f (u,x,t) has the first order continuous derivative it follows that
fulx;,t ), x;,t)=fulx; ) Xt ;) +O(2).
Also, we can write

Qu( ) U0 ) ~u0G.b)
ot

O(7),

+0(h"),

(1+i52j82u(xi’tk) _ Sau(x;,t,)
12 Ox? h?

+0O(7),

0
‘ ox?2 i Ox?

DlVEGZU(Xj’tk)]—r“iA *u(x;,t )
- |
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K
oDy U (x )= Ta_lz/qﬂu (x;,t,)+0(2),
1=0
From Eq. (2.4) and above results, we can obtain

1 1 k
(1+E5X2ju(xj ,tk)=(l+ﬁ5fju(xj 'tkfl)+:u’l§ﬂ’15x2u(xi )

(2.5)
+,ui/11(1+i52)u(x.,t )+r(l+i§2jf.kl+R.k
2|:o 12 X jrk-l 12 X j j
T}’
where, =Ky W, =x,r7, and
k 2 1 2 4 :
R =0(*)| 1+ 567 |+O(h ) (w7 4). (2.6)
1=0

By omitting the small term R, the implicit compact difference scheme for (1.6)-
(1.8) is given as follows:

1 7 1 A _
I+, +| ——p +22 |62 UK =|1- +(—+ ——2j52 Ukt
[ 1u2 [12 lu’l 12] X j j [ /11/“12 12 ﬂl:u’l 12 X j

K Kk
+ Y AU =, A, 1+i53 U 4z 1+i55 fr
1=2 : 1=2 12 : 12 :
(2.7)
Ul=w(x;), j=12..M-1

U(;( :(/)1(tk), U,\: z(ﬂz(tk), k =12,...,N.

Now we denote the solution vector of order M — 1 at t=t, by
U =U(t,)=U/,...,Us_ )" . We can give the matrix-vector form of (2.7) by
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k-1
AU*=>"BU'+F  k=123...,N, (2.8)
1=0
in which

1 5 1
A =tri {E(H,uz)—;11,6(1+,uz)+2ﬂ1,ﬁ(1+y2)—yl},
B, =Atni [M_&1_2M_Eﬂz,ﬁﬁ—&}

12 6 12

By s = | 25 (1 ). S0 ) 5 (1) |

Fk

1
—(E(lJr,uz)—,uljUh'jI +7| 1+
where tri[a,a,a;]y -y denotesa (M —1)x(M -1) tri-diagonal matrix. Each row of

this matrix contains the values a,,a, and a, on its sub-diagonal, diagonal and super

diagonal, respectively. We can state the solvability of proposed scheme in the following
theorem.

Theorem 1. The compact difference scheme (2.7) has a unique solution.

Proof. For any possible values of 4,2, and h the coefficient matrix A is strictly diagonal

dominant so it is nonsingular. Consequently the difference scheme (2.7) has a unique
solution.
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3. STABILITY OF PROPOSED METHOD

In the section we will analyze the stability of the finite difference scheme (2.7) by using the
Fourier analysis. For x = ( X1, Xz, ..., Xm-1)' € ®M* | we define a discrete 12-norm by

Hx"”/2 =(h I\gll xJ2 )%. Let U‘j‘ be the approximate solution of (2.7) and define
/ i
pf=Uk-U%  k=01.,N, j=01..M,
with corresponding vector
P =(pE Pl ) -

We obtain the following round off error equation

(1+,U2+(——/11+ )5j [1 Aty +( + Aty - ﬁgzj )plfl

_ 1 _ 1 _ Tk
+ﬂlz/1, 82 i = 1 2/1, (1+—5fjplj( '+r(1+—5fj(fjk Lot 1), (3.1)
=2 =2 12 12
1<j<M -1 1<k<N,
with
Py =py =0.
inwhich f*=fU%,x;,t,;) We define the grid function
h h
P} xj—§<x£xj+5,

P (x)=

0 0<x gﬂ or L—E<x <L.
2 2
We can expand the p* (x) in a Fourier series [5]

P (x)=3d, (e k =1,2,..,N,
| =—o0
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k I 0

Also we introduce the following norm

2 1
=St ) <[t o]
By applying the Parseval equality
L 2 w 2
g\pk (x)| dx = PCROE
we obtain
o= = lde (. (3.2)

Now we can suppose that the solution of equation (3.1) has the following form

ol =de™,

where o = ZLLI Substituting the above expression into (3.1) and putting &=ch, we

obtain

k ~
y7]

=2
where

b L0 2 2
L2cos? 242, + 2,
3 g3t

1,6 . 5,0
=—C0S" —+4SIn° —+
HETP 27 g 3

= teos?? >~ 4t sin 2 - ﬂl”‘?— ——ﬂl 1, + (3.4)
3 2
@ = -4y sin® - 0 _# coszg—g
2 2 3
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Lemma 2([14]). The coefficients 4, satisfy

M) A =1 A=y-1 4 <0, 1=12..,

n

(2) ia =0, -> 4 <1 VneN.

1=1

Lemma 3. The coefficient x in (3.4) satisfiesin 0 <—<3.

1
Y7,

Proof. Since g and u, are positive so from (3.4) we can write

1<3u=cos’ §+12ylsin2 §+,le cos® g+ 241, +2,

which gives 0< e <3.
y7i

Proposition 1. Suppose that d, (1<k <N) are defined by (3.3), then we have
di|<@+3L0)%|dg|,  k=L2...,N.

Proof. We will use mathematical induction to complete the proof. For k =1, from (3.3)
and using Lemma 3 we can write

1( . 1 _ii ~
|d1|£;[ﬂ|d0|+T(1+E5f)e IJg‘fJ‘O— fjo‘)
gi(ﬁ
7
L £|d |+r(1+i52je‘”9 L|do|e"?
P 0 12 X 0

n+ Lt
U

1 g2 -iio | |y0_ (50
d0|+r[1+E5XJe LS UJD

Now suppose

12,.., k-1

|d | <@+3L2)"|do[, n
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From (3.3) and induction hypothesis, we can write
d, |<| |(1+3Lr)kl ,U+|w|2|/1 by L1 Loz le e | f1 - 11
k- ,U 12

|do|

<701
y7]

k=

(0 ol G-l o1s Bt e ot -0
1=0 H 12

| |(1+3LT)k l{ |w|z ( ﬂ“l M’.I.D} [ ( +é5fje_ij3 L|dk_l|eij9j

SM(H 3Lo) Ha+a|(1-@-p)+L7)
y7;

=(1+3L7)k \ dg \
which completes the proof.

Theorem 2. The compact difference scheme (2.7) is unconditionally stable for any
O<y<1.

Proof. Applying Proposition 1 and Parseval's equality, we obtain

~ 112
e -

St 0o '

<h Z (1+3L7) d | <he3Lkr Z ‘d elajh‘ <es|_THp H 3LTHU0 0H22 |
j=1

which means that the scheme (2.7) is unconditionally stable.
4, CONVERGENCE OF PROPOSED METHOD

In this section we prove that difference scheme (2.5) converges with the spatial accuracy of
fourth order. We need some lemmas and theorems that will be expressed.
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Lemma 4([2]). Regarding to the definitions of 4,, we have

T}/_llzzc;ﬂ‘ =m+0(f)

On the basis (2.6) and Lemma 4, we have

k 2 1 2 4 : y
Rj=0@)@+ﬁaj+om)qur¢)
=0(r®)+10 (h4)/<177’1k221

=0(z?)+70¢(h )K{ﬂJFO(T)J O(r*+7h*),

so from (4.1), we can obtain
R}( =0 (r* +7h"),
k=12..N, j=12,...M,
therefore, there is a positive constant C,, such that [3]
R |<C,(z* +7h").
Similar to the stability analysis in Section 3, we define the grid functions [3]

el when xj—ﬂ<x £x.+n, i=12,...,M -1,
2 12

e“(x)=

0 when 0<x s%or L—%<x <L,

and

207

(4.1)

(4.2)
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R} when xj—n<x £x.+n, j=12,...M -1,
2 12

R*(x)=

0 when 0<x g%or L—%<x <L,

Thus e“(x) and R*(x) have the following Fourier series expansions

i 27lx

e“(x)=>n (e k =0,1...,N,
| =0
B P27l
RE(x)=D &) b, k=01...,N,
| =—0
where
lL —i 27lx
ma)ztjewxm L dx, k=01...,N,
0

—i 27xlx

ga)=%Iwam C dx,  K=0L..N.

Now, we define the following notations [3]

k k —k k
e =u(xj,tk)—Uj =u; U,

(4.3)
k=12,...,N, 1=12,....M,

e¥ =lefef,...ef, | R* =[RS Ry ,..LRY, | k=012..,N,

and introduce the following norms

el =[Skl <[ feroofe [, ooam,
j=1 0
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2

1
IR, :(MZ:lh RE \ZJ [I\Rk )| dx T . k=01...,N.
i=1 0

Using the Parseval equality
L ) ) o )
ﬂe (x)‘ de=Y|n, M, k=01...N,
0 |=—c0

and

[IR 0 dx = 3|6 Of, k =01...,N,

0 | =0

we also have

el = S 00F, k=0,

HRkHz=|i|§k(l)|2, k=01...N.

From (2.6), we obtain that

1 1 k
1+—5§ju—.k = (1+—5jju_.“ oy A8
( 12 ) 12 ) l.zz;‘ J

K
1 2 | k-l 1 2 |§ k-1 k
+u E 21(1+—5Xju. +r(1+—5xjf. +R.
2 12 ) 12 ‘ ‘

k=12,...,N, j=12,...M,

209

(4.5)

(4.6)

4.7)

(4.8)

where 0 =u(x,,t,) and f**=f @ " x,,t,_,). Subtracting (2.7) from (4.8), leads to
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1 1 _ : -
(1+Ec$f]ejk :(1+E§fje;‘ Yy Aore!

< 1 . 1 )7
+ 1, A (1+Eafjejk ' +T(1+E§*2j fi o+ R

1=0

er =el =0, e?:O, k=12,...,,N, j=12,...,M.

Now we assume that e and R are

k i(ojh
€ :nkel( ",
k i(ojh
where a:ZIT”. Substituting the above relations into (4.9) results

1. k 1 i —
Uy :;{ﬂ"'wzﬂﬂh—l +T(1+Eé‘x2} Jg(f J'k _fik )+§ki|1

1=2

k=12,....N.
Notice that e® =0 and we have

7 =1,(1)=0.
In addition, from the left hand equality of (4.5) and (4.2), we obtain [3]

HRkHZ S«/WCl(TZ +Th4)=Clx/E(TZ +Th4).

(4.9)

(4.10)

(4.11)

Also from convergence of the series in the right hand side of (4.7), there is a positive

constant C, such that [3]
&=l & (n)|<CyLe|&|=CoLelg ()], k=L2...,N.

(4.12)

Proposition 2. If 7, (k =12,...,N) be the solutions of equation (4.10), then there is a

positive constant C, such that

7] <Cok (1+3L2) |E], Kk =12...N.
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Proof. We use the mathematical induction for proof. Firstly, from (4.10) and (4.12) we
have

1
\nl\s;|§1|s%c2 L|&|<3C, Lz]&|<3C, Le|&|<Cy 1 +3L7)|4,).

Now, suppose that

|70]<Con @+3L7)"| &, n=12,....k-1

From Lemma 2 and noticing that & >0 we have,

Cy (k-1 a0 &
s 28D a5

=0

+1{re‘”9 (1+i5XZJH F-t
y7, 12

L k=D

}rcz |_|§1|}

k-

(1+3Lz')k_l{,[z+|w| (Z | A |—|/11|J+TL}| &|+3C,7L|& |

[LEN

k
< Sl guaylarial (-5 al-alr g saratote, 4|
1=1

Cy (k-1

< @+3L) Ha+|a| y+rL & | +@+3L) C, | & |

<c, (k—l)(1+3Lr)kl(—ﬂ+TL]| &|+(1+3L0) C, 4 |
7,
=kC, (1+3L7)*|&)-

Theorem 3. Suppose u(x,t) is the exact solution of the Eq. (1.6), then the compact finite

difference scheme (2.7) is L, -convergent with convergence order O(z+h*).

Proof. By considering Proposition 2 and noticing (4.6), (4.7) and (4.11), we can obtain
Hek H2 <C, k(1+3L7)" HRl H2 <C;7JLC, ke (z+h?).
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Since kz<T , we have
le*[, <c(z+h*)
in which
C=CC,TLeT,
and this completes the proof.

5. NUMERICAL RESULTS

In this section we present the numerical results of the new method on several test problems.
We tested the accuracy and stability of the method described in this paper by performing
the mentioned scheme for different values of h and 7z . We performed our computations
using Matlab 7 software on a Pentium IV, 2800 MHz CPU machine with 2 Gbyte of
memory. We calculated the computational orders of the method presented in this article in

time variable with [17, 24]
2z,h
erorer=ho. (HII (( Th)?IHJ

and in space variables with [4]

C,-order =log, (w]

[CCAD
5.1 Test problem 1.

We consider the fractional linear PDE

ou(x,t) _ Dly[ézu(x,t)

™ Ve —u(x,t)}+(1+7/)et , (5.1)

with boundary and initial conditions
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ug =t"7, uf =e"t*”, k=12,...,N,
(5.2)
u’=0, j=12,...,M.

J

Then, the exact solution of (5.1), (5.2) is
u(x,t)=e*t”.

We solve this problem with the method presented in this article with several values of h,
tand y forL = 1 atfinal time T = 1. The L _error, C,-order, C,-order and CPU
time (s) of applied method are shown in Tables 1,2.

Table 1. Errors and computational orders obtained for test problem 1 with h = 2—10

y = 0.25 y = 0.65

T Lo C, —order L, C; —order CPU time(s)
1/10  1.3470 x 1072 _ 1.4174 X 1072 _ 00.1570
1/20 6.4528 x 1073 1.0617 6.9994 x 1073 1.0179 00.2029
1/40  3.1118 x 1073 1.0522 3.4728 x 1073 1.0111 00.3599
1/80  1.5086 x 107 1.0445 1.7280 x 1073 1.0070 01.0000
1/160 7.3457 x 107* 1.0382 8.6135 x 107* 1.0044 03.5620
1/320 3.5902 x 10~* 1.0328 42982 x 107* 1.0029 12.9840
1/640 1.7404 x 10~* 1.0281 2.1446 x 1074 1.0011 49.2340

Tables 1,2 show that the computational orders are close to theoretical orders, i.e the order of
method is O(z) in time variable and O(h*) in space variables. Figure 1 shows the plots of
error and approximate solution of this test problem with h =1/50, 7=1/100 and y =0.55.
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Error

Figure 1. Error (Right Panel) and Approximate Solution (Left Panel) Obtained for Test
Problem 1 with h =1/50, 7=1/100 and » =0.55.
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Table 2. Errors and computational orders obtained for test problem 1.

y=01 y =109

C, —order Lo C, —order L,
h=1=1 3.9584 x 102 _ 43139 x 1072 _
h=1,1== 2.2060 x 1073 4.1652 2.6889 x 1073 4.0044
h=—, 1= 1.2716 X 1074 4.1167 1.6913 X 1074 3.9903
h=1=: 1.9148 x 1072 ~ 2.1539 x 1072 _
h==,1=— 1.0859 x 1073 4.1402 1.3532 x 1073 3.9925
h= 3—12 7= ﬁ 6.2336 x 10~ 4.1227 8.4585 x 1075 4.0000

5.2 Test problem 2.

We consider the fractional PDE with the nonlinear source term

ou(x,t) _ DI 82u(x,t)_u(x .
ot ox 2 '

I+y

+u®(x ,t)+cos(7zx){2t +(7% +1) )
Y

—tecosz(nx)},
with boundary and initial conditions
uy =t? uy =t*cos(rL), k =1,2,...,N,

0 _ §_
u; =0, j=12...,M.
where, the exact solution is

u(x,t) =t*cos(zx).
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We solve this problem with the method presented in this article with several values of
h, z and y for L =1 atfinaltime T =1. The L, error, C,-order, C,-order and CPU

time (s) of applied method are shown in Tables 3, 4.

Table 3. Errors and computational orders obtained for test problem 2 with h = 1—16

T Lo C, —order L, C, —order CPU time(s)
1/10  3.3534 x 1072 B 3.9372 x 1072 _ 00.1250
/20  1.7050 x 1072 0.9758 2.0125 x 1072 0.9682 00.1879
1/40  8.5963 x 1072  0.9880 1.0172 x 1072 0.9844 00.4070
1/80  4.3155 x 1072 0.9942 5.1132 x 1073 0.9923 00.8279
1/160 2.1616 x 107*  0.9974 2.5628 x 1073 0.9965 02.9059
1/320 1.0813 x 1072  0.9993 1.2825 x 1073 0.9988 10.5940
1/640 5.4035 x 10~*  1.0008 6.4111 x 107* 1.0003 41.3440

Tables 3, 4 show that the computational orders are close to theoretical orders, i.e the order
of method is O(z) in time variable and O (h*) in space variables. Figure 1 shows the plots
of error and approximate solution of this test problem with h=1/32, r=1/100 and
7 =0.45
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u(x,t)
o

Figure 2. Error (Right Panel) and Approximate Solution (Left Panel) Obtained for Test
Problem 2 with h = 1/32, T = 1/100 and y = 0.45.
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Table 4. Errors and computational orders obtained for test problem 2.

y = 0.35 y =0.75
C, —order Lo C, —order Lo

h=r1 :i 73142 x 1072 _ 8.9651 X 102 ~
h= é T = 5_14 4.8645 X 1073 3.9094 6.2011 x 1073 3.8537
h=2, 1= — 3.0544 x 104 3.9942 3.8992 x 104 3.9913

16 1024
h=1=: 3.7930 x 1072 ~ 47484 x 1072 _
h = 1_15 = % 2.4473 x 103 3.9540 3.1188 x 103 3.9284
h=2), 1=— 1.5600 x 10~* 3.9716 1.9900 x 10~* 3.9702

a2 20483
6. CONCLUSION

In this article, we constructed a compact difference scheme for the solution of a fractional
nonlinear PDE in the electroanalytical chemistry. This compact difference scheme has the
advantage of high accuracy and unconditional stability which we proved it using the
Fourier analysis. Also we show that the proposed compact finite difference scheme
converges with the spatial accuracy of fourth-order. Numerical results confirmed the
theoretical results of proposed method.

REFERENCES

1. R. Bagley and P. Torvik, A theoretical basis for the application of fractional
calculus to viscoelasticity, J. Rheol. 27 (1983) 201-210.

2. C. M. Chen, F. Liu and K. Burrage, Finite difference methods and a Fuorier
analysis for the fractional reaction-subdiffusion equation, Appl. Math. Comput. 198
(2008) 754-769.



Numerical solution of a fractional PDE in the electroanalytical chemistry 219

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

C. M. Chen, F. Liu and V. Anh, Numerical analysis of the Rayleigh-Stokes problem
for a heated generalized second grade fluid with fractional derivatives, Appl. Math.
Comput. 204 (2008) 340-351.

M. Cui, Compact finite difference method for the fractional diffusion equation, J.
Comput. Phys. 228 (2009) 7792—-7804.

K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Math.
Anal. Appl. 265 (2002) 229-248.

R. Du, W. R. Cao and Z. Z. Sun, A compact difference scheme for the fractional
diffusion-wave equation, Appl. Math. Model. 34 (2010) 2998—-3007.

M. Goto and K. B. Oldham, Serniintegral electroanalysis: studies on the
neopolarograrns plateau, Anal. Chem. 46 (1973) 1522-1530.

M. Goto and D. Ishii, Semidifferential elertroanalysis, J. Electroanal. Chem. and
Interfacial Electrochem. 61 (1975) 361—-365.

M. Grenness and K. B. Oldham, Semiintegral electroanalysis: theory and
verification, Anal. Chem. 44 (1972) 1121-1129.

T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit
solution method for the fractional diffusion equation, J. Comput. Phys. 205 (2005)
719-736.

F. Liu, V. Anh and I. Turner, Numerical solution of the space fractional Fokker-
Planck equation, J. Comput. Appl. Math. 166 (2004) 209-219.

F. Liu, C. Yang and K. Burrage, Numerical method and analytical technique of the
modified anomalous sub-diffusion equation with a nonlinear source term, J.
Comput. Appl. Math. 231 (2009) 160-176.

Q. Liu, F. Liu, I. Turner and V. Anh, Finite element approximation for a modified
anomalous Sub-diffusion equation, Appl. Math. Model. 35 (2011) 4103-4116.

F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burrage, Stability and convergence of
the difference methods for the space-time fractional advection-diffusion equation,
Appl. Math. Comput. 191 (2007) 12-20.

R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent
developments in the description of anomalous transport by fractional dynamics, J.
Phys. A 37 (2004) R161-208.

K. S. Miller and B. Ross, An introductional the fractional calculus and fractional
differential equations, New York and London, Academic Press, 1974.

A. Mohebbi and M. Dehghan, The use of compact boundary value method for the
solution of two-dimensional Schréodinger equation, J. Comput. Appl. Math. 225
(2009) 124-134.

Z. M. Odibat, Computational algorithms for computing the fractional derivatives of
functions, Math. Comput. Simul. 79 (2009) 2013-2020.



220

M. ABBASZADE AND A. MOHEBBI

19. K. B. Oldham, J. Spanier, The Fractional Calculus, Theory and Application of
Differentiation and Integration to Arbitrary Order, Academic Press, 1974.

20. K. R. Oldham, A signal-independent electroanalytical method, Anal. Chenl. 44
(1972) 196-198.

21. K. B. Oldham and J. Spanier, The replacement of Fick's law by a formulation
involvirig semidifferentiation, J. Electroanal. Chem. Interfacial Electrochem. 26
(1970) 331-341.

22. K. B. Oldham and J. Spanier, The fractional calculus. New York and London,
Academic Press, 1974.

23. |. Podulbny, Fractional differential equations, New York, Academic Press, 1999.

24. A. Saadatmandi and M. R. Azizi, Chebyshev finite difference method for a two-
point boundary value problems with applications to chemical reactor theory, Iranian
J. Math. Chem. 3 (2012) 1-7.

25.Z. Z. Sun and X. N .Wu, A fully discrete difference scheme for a diffusion-wave
system, Appl. Numer. Math. 56 (2006) 193-209.

26. W. Wess, The fractional diffusion equation, J. Math. Phys. 27 (1996) 2782-2785.



