Computing Vertex PI, Omega and Sadhana Polynomials of 12(2n+1) $^{\text {Fullerenes }}$

Modjtaba Ghorbani
Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I R. Iran

(Received January 10, 2010)

Abstract

The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as $\operatorname{PI}_{v}(G)=\sum_{e=u v} n_{u}(e)+n_{v}(e)$. Then Omega polynomial $\Omega(\mathrm{G}, \mathrm{x})$ for counting qoc strips in G is defined as $\Omega(\mathrm{G}, \mathrm{x})=$ $\sum_{\mathrm{c}} \mathrm{m}(\mathrm{G}, \mathrm{c}) \mathrm{x}^{\mathrm{c}}$ with $\mathrm{m}(\mathrm{G}, \mathrm{c})$ being the number of strips of length c . In this paper, a new infinite class of fullerenes is constructed. The vertex PI, omega and Sadhana polynomials of this class of fullerenes are computed for the first time.

Keywords: Fullerene, vertex PI polynomial, Omega polynomial, Sadhana polynomial.

1. Introduction

Fullerenes are molecules in the form of cage-like polyhedra, consisting solely of carbon atoms. Fullerenes F_{n} can be drawn for $\mathrm{n}=20$ and for all even $\mathrm{n} \geq 24$. They have n carbon atoms, $3 \mathrm{n} / 2$ bonds, 12 pentagonal and $\mathrm{n} / 2-10$ hexagonal faces. The most important member of the family of fullerenes is $\mathrm{C}_{60}[1,2]$.

Let \sum be the class of finite graphs. A topological index is a function Top from \sum into real numbers with this property that $\operatorname{Top}(\mathrm{G})=\operatorname{Top}(\mathrm{H})$, if G and H are isomorphic.

Let $G=(V, E)$ be a connected bipartite graph with the vertex set $V=V(G)$ and the edge set $\mathrm{E}=\mathrm{E}(\mathrm{G})$, without loops and multiple edges. The number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $n_{u}(e)$. Analogously, $n_{v}(e)$ is the number of vertices of G whose distance to the vertex v is smaller than u. The vertex PI index is a topological index which is introduced in [3]. It is defined as the sum of $\left[n_{u}(e)+n_{v}(e)\right]$, over all edges of a graph G. Let G be an arbitrary graph. Two edges $\mathrm{e}=\mathrm{uv}$ and $\mathrm{f}=\mathrm{xy}$ of G are called codistant (briefly: e co f) if they obey the
topologically parallel edges relation. For some edges of a connected graph G there are the following relations satisfied [4,5]:

$$
\begin{gathered}
e \cos \\
e \operatorname{co~} f \Leftrightarrow f \cos e \\
e \cos f, f \operatorname{coh} h e \operatorname{co} h
\end{gathered}
$$

though the last relation is not always valid.
Set $C(e):=\{f \in E(G) \mid f$ co $e\}$. If the relation "co" is transitive on $C(e)$ then $C(e)$ is called an orthogonal cut "oc" of the graph G. The graph G is called co-graph if and only if the edge set $\mathrm{E}(\mathrm{G})$ is the union of disjoint orthogonal cuts.

Let $m(G, c)$ be the number of qoc strips of length c (i.e., the number of cut-off edges) in the graph G, for the sake of simplicity, $m(G, c)$ will hereafter be written as m. Three counting polynomials have been defined [6-8] on the ground of qoc strips:
$\Omega(\mathrm{G}, \mathrm{x})=\sum_{\mathrm{c}} \mathrm{m} \cdot \mathrm{x}^{\mathrm{c}}, \Theta(\mathrm{G}, \mathrm{x})=\sum_{\mathrm{c}} \mathrm{m} \cdot \mathrm{c} \cdot \mathrm{x}^{\mathrm{c}}$ and $\Pi(\mathrm{G}, \mathrm{x})=\sum_{\mathrm{c}} \mathrm{m} \cdot \mathrm{c} \cdot \mathrm{x}^{\mathrm{e}-\mathrm{c}} \cdot \Omega(\mathrm{G}, \mathrm{x})$ and $\Theta(G, x)$ polynomials count equidistant edges in G while $\Pi(G, x)$, non-equidistant edges. In a counting polynomial, the first derivative (in $\mathrm{x}=1$) defines the type of property which is counted; for the three polynomials they are:

$$
\Omega^{\prime}(\mathrm{G}, 1)=\sum_{\mathrm{c}} \mathrm{~m} \cdot \mathrm{c}=|\mathrm{E}(\mathrm{G})|, \Theta^{\prime}(\mathrm{G}, 1)=\sum_{\mathrm{c}} \mathrm{~m} \cdot \mathrm{c}^{2} \text { and } \Pi^{\prime}(\mathrm{G}, 1)=\sum_{\mathrm{c}} \mathrm{~m} \cdot \mathrm{c} \cdot(\mathrm{e}-\mathrm{c}) .
$$

If G is bipartite, then a qoc starts and ends out of G and so $\Omega(G, 1)=r / 2$, in which r is the number of edges in out of G .

The Sadhana index $\operatorname{Sd}(\mathrm{G})$ for counting qoc strips in G was defined by Khadikar et. al. $[9,10]$ as $\operatorname{Sd}(G)=\sum_{c} m(G, c)(|E(G)|-c)$, where $m(G, c)$ is the number of strips of length c. We now define the Sadhana polynomial of a graph G as $\operatorname{Sd}(G, x)=\sum_{c} m(G, c) \cdot x^{|E|-c}$. By definition of Omega polynomial, one can obtain the Sadhana polynomial by replacing x^{c} with $x^{[E \mid-c}$ in omega polynomial. Then the Sadhana index will be the first derivative of $\operatorname{Sd}(G, x)$ evaluated at $x=1$. Herein, our notation is standard and taken from the standard book of graph theory [11-17].

Example 1. Let C_{n} denotes the cycle of length n.

$$
\Omega\left(C_{n}, x\right)=\left\{\begin{array}{ll}
\frac{n}{2} x^{2} & 2 \mid n \\
n x & 2 \nmid n
\end{array} \text { and } \operatorname{Sd}\left(C_{n}, x\right)=\left\{\begin{array}{ll}
\frac{n}{2} x^{n-2} & 2 \mid n \\
n x^{n-1} & 2 \nmid n
\end{array} .\right.\right.
$$

Example 2. Suppose K_{n} denotes the complete graph on n vertices. Then we have:
$\Omega\left(K_{n}, x\right)=\left\{\begin{array}{ll}\frac{n}{2}\left(x^{\frac{n}{2}}+x^{\frac{n}{2}-1}\right) & 2 \mid n \\ n x^{\frac{n-1}{2}} & 2 \nmid n\end{array}\right.$ and $S d\left(K_{n}, x\right)=\left\{\begin{array}{ll}\frac{n}{2}\left(x^{\frac{n}{2}(n-2)}+x^{\frac{n^{2}}{2}-n+1}\right) & 2 \mid n . \\ n x^{(n-1)(n-2) / 2} & 2 \nmid n\end{array}\right.$.

Example 3. Let T_{n} be a tree on n vertices. We know that $\left|E\left(T_{n}\right)\right|=n-1$. So,

$$
\Omega\left(T_{n}, x\right)=\Theta\left(T_{n}, x\right)=(n-1) x, S d\left(T_{n}, x\right)=\Pi\left(T_{n}, x\right)=(n-1) x^{n-2} .
$$

2. Main Results and Discussion

The aim of this section is to compute the counting polynomials of equidistant (Omega, Sadhana and Theta polynomials) of an infinite family $\mathrm{F}_{12(2 n+1)}$ of fullerenes with $12(2 n+1)$ carbon atoms and $36 n+18$ bonds (the graph $F_{12(2 n+1)}$, Figure 1 is $n=4$).

Theorem 4. The omega polynomial of fullerene graph $F_{12(2 n+1)}$ for $n \geq 2$ is as follows:

$$
\Omega\left(\mathrm{F}_{12(2 \mathrm{n}+1)}, x\right)=12 x^{3}+12 x^{2 n-2}+6 x^{n-1}+3 x^{2 n+4} .
$$

Proof. By figure 1, there are four distinct cases of qoc strips. We denote the corresponding edges by f_{1}, f_{2}, f_{3} and f_{4}. By the table 1 proof is completed.

Edge	\#Co distance	Number of edges
f_{1}	3	12
f_{2}	$2 \mathrm{n}-2$	12
f_{3}	$2 \mathrm{n}+4$	3
f_{4}	$\mathrm{n}-1$	6

Table 1. The Number of Equidistant Edges.

Corollary 5. The Sadhana polynomial of fullerene graph $F_{12(2 n+1)}$ is as follows:

$$
\operatorname{Sd}\left(\mathrm{F}_{12(2 \mathrm{n}+1)}, \mathrm{x}\right)=12 \mathrm{x}^{36 \mathrm{n}+15}+12 \mathrm{x}^{34 \mathrm{n}+20}+6 \mathrm{x}^{35 \mathrm{n}+19}+3 \mathrm{x}^{34 \mathrm{n}+14}
$$

Now, we are ready to compute the vertex PI polynomial of fullerene graph $\mathrm{F}_{12(2 n+1)}$. It is well-known fact that an acyclic graph T does not have cycles and so $n_{u}(e \mid G)+n_{v}(e \mid G)$ $=|\mathrm{V}(\mathrm{T})|$. Thus $\mathrm{PI}_{\mathrm{v}}(\mathrm{T})=|\mathrm{V}(\mathrm{T})| \cdot|\mathrm{E}(\mathrm{T})|$. Since a fullerene graph F has 12 pentagonal faces, $\mathrm{PI}_{\mathrm{v}}(\mathrm{F})<|\mathrm{V}(\mathrm{F})| \cdot|\mathrm{E}(\mathrm{F})|$. Let G be a connected graph. The PI_{v} polynomials of G are defined as $\operatorname{PI}_{\mathrm{v}}(\mathrm{G} ; \mathrm{x})=\quad \sum_{\mathrm{e}=\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \mathrm{x}^{\mathrm{n}_{\mathrm{u}}(\mathrm{e} \mid \mathrm{G})+\mathrm{n}_{\mathrm{v}}(\mathrm{e} \mid \mathrm{G})}$.Obviously $\quad \mathrm{PI}_{\mathrm{v}}^{\prime}(\mathrm{G}, 1)=\mathrm{PI}_{\mathrm{v}}(\mathrm{G})$ and $\quad \mathrm{PI}_{\mathrm{v}}(\mathrm{G}, 1)=$
$|\mathrm{E}(\mathrm{G})|$. Define $\mathrm{N}(\mathrm{e}) \quad=\quad|\mathrm{V}| \quad-\quad\left(\mathrm{n}_{\mathrm{u}}(\mathrm{e}) \quad+\quad \mathrm{n}_{\mathrm{v}}(\mathrm{e})\right)$. Then $\quad \mathrm{PI}_{\mathrm{v}}(\mathrm{G}) \quad=$ $\sum_{e=u v}[|V|-N(e)]=|V||E|-\sum_{e=u v} N(e)$ and we have:

$$
\begin{aligned}
\mathrm{PI}_{\mathrm{v}}(\mathrm{G}, \mathrm{x}) & =\sum_{\mathrm{e}=\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \mathrm{x}^{\mathrm{n}_{\mathrm{u}}(\mathrm{e})+\mathrm{n}_{\mathrm{v}}(\mathrm{e})}=\sum_{\mathrm{e}=\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \mathrm{x}^{|\mathrm{V}(\mathrm{G})|-\mathrm{N}(\mathrm{e})} \\
& =\mathrm{x}^{|\mathrm{V}(\mathrm{G})|} \sum_{\mathrm{e}=\mathrm{uv} \in \mathrm{E}(\mathrm{G})} \mathrm{x}^{-\mathrm{N}(\mathrm{e})} .
\end{aligned}
$$

Figure1.The graph of fullerene $\mathrm{F}_{12(2 \mathrm{n}+1)}$ for $\mathrm{n}=4$.

Example 6. Suppose F_{30} denotes the fullerene graph on 30 vertices, see Figure 2. Then $\mathrm{PI}_{\mathrm{v}}\left(F_{30}, \mathrm{x}\right)=10 \mathrm{x}^{20}+10 \mathrm{x}^{22}+20 \mathrm{x}^{26}+5 \mathrm{x}^{30}$ and so $\mathrm{PI}_{\mathrm{v}}\left(F_{30}\right)=1090$.

Figure 2. The Fullerene Graph F_{30}.

Theorem 7. The vertex PI polynomial of fullerene graph $F_{12(2 n+1)}$ for $n \geq 2$ is as follows:

$$
\begin{aligned}
\mathrm{PI}_{\mathrm{V}}\left(\mathrm{~F}_{12(2 \mathrm{n}+1)}, \mathrm{x}\right) & =24 \mathrm{x}^{24 \mathrm{n}-64}+12 \mathrm{x}^{24 \mathrm{n}-44}+12 \mathrm{x}^{24 \mathrm{n}-12}+6(\mathrm{n}-3) \mathrm{x}^{24 \mathrm{n}-4}+24 \mathrm{x}^{24 \mathrm{n}-2}+24 \mathrm{x}^{24 \mathrm{n}} \\
& +24 \mathrm{x}^{24 \mathrm{n}+6}+24 \mathrm{x}^{24 \mathrm{n}+8}+24 \mathrm{x}^{24 \mathrm{n}+10}+6(5 \mathrm{n}-22) \mathrm{x}^{24 \mathrm{n}+12} .
\end{aligned}
$$

Proof. From Figures 3, one can see that there are ten types of edges of fullerene graph $\mathrm{F}_{12(2 \mathrm{n}+1)}$. We denote the corresponding edges by $\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots, \mathrm{e}_{10}$. By table 2 the proof is completed.

Edge	Number of vertex which are codistance from two ends of edges	Num
e_{1}	0	$6(5 \mathrm{n}-22)$
e_{2}	2	12
e_{3}	4	12
e_{4}	6	24
e_{5}	12	24
e_{6}	14	24
e_{7}	16	$6(\mathrm{n}-3)$
e_{8}	24	12
e_{9}	56	12
e_{10}	76	24

Table 2. Computing $\mathrm{N}(\mathrm{e})$ for Different Edges.

Figure 3. Types of Edges of Fullerene Graph $\mathrm{F}_{12(2 \mathrm{n}+1)}$.

REFERENCES

1. H. W. Kroto, J. R. Heath, S. C.O'Brien, R. F.Curl and R.E. Smalley, C ${ }_{60}$: Buckminsterfullerene, Nature, 1985, 318, 162-163.
2. H. W. Kroto, J. E. Fichier and D. E Cox, The Fullerene, Pergamon Press, New York, 1993.
3. M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, The first and second. Zagreb indices of some graph operations, Disc. Appl. Math., 2009, 157(4), 804-811.
4. B. E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, Int. J. Quantum Chem., 1996, 60, 959-969.
5. P. E. John, A. E. Vizitiu, S. Cigher, and M. V. Diudea, CI Index in Tubular Nanostructures, MATCH Commun. Math. Comput. Chem., 2007, 57, 479-484.
6. M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu and P. E. John, Omega Polynomial in Tubular Nanostructures, Croat. Chem. Acta, 2006, 79, 445-448.
7. A. E. Vizitiu, S. Cigher, M. V. Diudea and M. S. Florescu, Omega polynomial in $((4,8) 3)$ tubular nanostructures, MATCH Commun. Math. Comput. Chem., 2007, 57, 457-462.
8. M.V. Diudea, Phenylenic and naphthylenic tori, Fullerenes, Nanotubes, and Carbon Nanostructures, 2002, 10, 273-292.
9. P. V. Khadikar, S. Joshi, A. V. Bajaj and D. Mandloi, Correlations between the benzene character of acenes or helicenes and simple molecular descriptors, Bioorg. Med .Chem. Lett., 2004, 14, 1187-1191.
10. P. V. Khadikar, V. K. Agrawal and S. Karmarkar, A Novel PI Index and its Applications, Bioorg. Med. Chem., 2002, 10, 3499-3507.
11. N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
12. A. R. Ashrafi, M. Ghorbani and M. Jalali, Computing sadhana polynomial of Vphenylenic nanotubes and nanotori, Indian J. Chem., 2008, 47A, 535-537.
13. A. R. Ashrafi, M. Jalali, M. Ghorbani and M. V. Diudea, Computing PI and Omega Polynomials of an Infinite Family of Fullerenes, MATCH Commun. Math. Comput. Chem., 2008, 60, 905-916.
14. M. Ghorbani and A. R. Ashrafi, Counting the number of hetero fullerenes, J. Comput. Theor. Nanosci., 2006, 3, 803-810.
15. A. R. Ashrafi, M. Ghorbani and M. Jalali, Detour matrix and detour index of some nanotubes, Dig. J. Nanomat. Bios., 2008, 3(4), 245-250.
16. A. R. Ashrafi, M. Jalali and M. Ghorbani, A Note on Markaracter Tables of Finite Groups, MATCH Commun. Math. Comput. Chem., 2008, 60(3), 595-603.
17. M. Ghorbani and M. Jalali, The Vertex PI, Szeged and Omega Polynomials of Carbon Nanocones $\mathrm{CNC}_{4}[\mathrm{n}]$, MATCH Commun. Math. Comput. Chem., 2009, 62, 353-362.
