[1] A. R. Ashrafi, S. Yousefi, Computing Wiener index of a ššš¶ō¬øš¶ō¬¼(š) nanotorus,
MATCH Commun. Math. Comput. Chem.57 (2007) 403–410.
[2] R Core Team, R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria. (2016) URL: https://www.Rproject.
org/.
[3] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete
Math. 185 (1998) 245–248.
[4] K. C. Das, Sharp bounds for the sum of the squares of the degrees of a graph,
Kragujevac J. Math. 25 (2003) 31–49.
[5] N. De, S. M. A. Nayeem, A. Pal, The F-coindex of some graph operations, Springer
Plus (2016) 5:221, doi: 10.1186/s40064-016-1864-7.
[6] H. Deng, Catacondensed Benzenoids and Phenylenes with the extremal third–order
RandiÄ index, MATCH Commun. Math. Comput. Chem.64 (2010) 471– 496.
[7] M. V. Diudea, E. C. Kirby, The energetic stability of tori and single wall tubes,
Fuller. Sci. Technol. 9 (2001) 445–465.
[8] M. V. Diudea, Graphenes from 4-valent tori, Bull. Chem. Soc. Jpn. 75 (2002) 487–
492.
[9] M. V. Diudea, Hosoya polynomial in tori, MATCH Commun. Math. Comput. Chem.
45 (2002) 109–122.
[10] M. V. Diudea, B. Parv, E. C. Kirby, Azulenic tori, MATCH Commun. Math.
Comput. Chem. 47 (2003) 53–70.
[11] M. V. Diudea, M. Stefu, B. Prv, P. E. John, Wiener index of armchair polyhex
nanotubes, Croat. Chem. Acta 77 (12) (2004) 111–115.
[12] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015)
1184–1190.
[13] I. Gutman, N. TrinajstiÄ, Graph theory and molecular orbitals. Total š-electron
energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535–538.
[14] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[15] S. M. Hosamani, Computing Sanskruti index of certain nanostructures, J. Appl.
Math. Comput. 54 (1−2) (2017) 425–433.
[16] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research,
Academic Press, New York, 1976.
[17] L. B. Kier, L. H. Hall, W. J. Murray, M. RandiÄ, Molecular connectivity V:
connectivity series concept applied to density, J. Pharm. Sci. 65 (1976) 1226–1230.
[18] A. MiliÄeviÄ, S. NikoliÄ, On variable Zagreb indices, Croat. Chem. Acta 77 (1−2)
(2004) 97–101.
[19] A. MiliÄeviÄ, N. Raos, Estimation of stability of coordination compounds by using
topological indices, Polyhedron 25 (14) (2006) 2800–2808.
[20] M. F. Nadeem, S. Zafar, Z. Zahid, On certain topological indices of the line graph of
subdivision graphs, Appl. Math. Comput. 271 (2015) 790–794.
[21] M. F. Nadeem, S. Zafar, Z. Zahid, On topological properties of the line graphs of
subdivision graphs of certain nanostructures, Appl. Math. Comput. 273 (2016) 125–
130.
[22] S. NikoliÄ, N. TrinajstiÄ, S. Ivaniš, The connectivity indices of regular graphs,
Croat. Chem. Acta 72 (4) (1999) 875–883.
[23] S. NikoliÄ, N. Raos, Estimation of stablity constants of mixed amino acid complexes
with copper (II) from topological indices, Croat. Chem. Acta 74 (2001) 621–631.
[24] L. Pogliani, Molecular modeling by linear combinations of connectivity indices, J.
Phys. Chem. 99 (3) (1995) 925–937.
[25] L. Pogliani, A strategy for molecular modeling of a physicochemical property using
a linear combination of connectivity indexes, Croat. Chem. Acta 69 (1) (1996) 95–
109.
[26] L. Pogliani, Higher-level descriptor in molecular connectivity, Croat. Chem. Acta 75
(2) (2002) 409–432.
[27] J. Rada, O. Araujo, I. Gutman, RandiÄ index of benzenoid systems and phenylenes,
Croat. Chem. Acta 74 (2001) 225–235.
[28] J. Rada, O. Araujo, Higher order connectivity indices of starlike trees, Discrete Appl.
Math. 119 (2002) 287–295.
[29] P. S. Ranjini, V. Lokesha, M. A. Rajan, On the Shultz index of the subdivision
graphs, Adv. Stud. Contemp. Math. 21 (3) (2011) 279–290.
[30] P. S. Ranjini, V. Lokesha, I. N. Cangül, On the Zagreb indices of the line graphs of
the subdivision graphs, Appl. Math. Comput. 218 (2011) 699–702.
[31] M. RandiÄ, On characterization of molecular branching, J. Am. Chem. Soc. 97
(1975) 6609–6615.
[32] G. Su, L. Xu, Topological indices of the line graph of subdivision graphs and their
Schur-bounds, Appl. Math. Comput. 253 (2015) 395–401.
[33] P. Tattar, S. Ramaiah, B. G. Manjunath, A Course in Statistics with R, John Wiley &
Sons, Ltd., 2016.
[34] E. W. Weisstein, Tadpole graph, From Matheworld-A Wolfram Web Resource.
[35] J. Zhang, H. Deng, S. Chen, Second order Randic′ index of phenylenes and their
corresponding hexagonal squeezes, J. Math. Chem. 42 (4) (2007) 941–947.
[36] J. Zhang, H. Deng, Third order RandiÄ index of phenylenes, J. Math. Chem. 43 (1)
(2008) 12–18.