[1] A. Abbas, Model predictive control of a reverse osmosis desalination unit, Desalin.
194 (2006) 268−280.
[2] B. Absar and O. Belhamiti, Modeling and computer simulation of a reverse osmosis
desalination plant-case study of Bousfer plant-Algeria, Desalin. Water Treat. 51 (2013)
5942−5953.
[3] B. Absar, S. E. M. L. Kadi and O. Belhamiti, Reverse osmosis modeling with the
orthogonal collocation on finite element method, Desalin. Water Treat. 21 (2010)
23−32.
[4] M. G. Marcovecchio, P. A. Aguirre and N. J. Scenna, Global optimal design of reverse
osmosis networks for seawater desalination: modeling and algorithm, Desalin. 184
(2005) 259−271.
[5] H. J. Oh, T. M. Hwang and S. Lee, A simplified simulation model of RO systems for
seawater desalination, Desalin. 238 (2009) 128−139.
[6] N. Ablaoui-Lahmar and O. Belhamiti, Numerical study of convection-reactiondiffusion
equation by the Legendre wavelet finite difference method. Adv. Nonlinear
Var. Inequal. 19 (2016) (2) 94−112.
[7] H. Ali Merina and O. Belhamiti, Simulation Study of Nonlinear Reverse Osmosis
Desalination System Using Third and Fourth Chebyshev Wavelet Methods. MATCH
Commun. Math. Comput. Chem. 75 (2016) 629−652.
[8] A. Atangana and A. A. Secer, Note on fractional order derivatives and table of
fractional derivatives of some special functions, Abstr. Appl. Anal. 2013 (2013) 1−8.
[9] O. Belhamiti, A new approach to solve a set of nonlinear split boundary value
problems, Commun. Nonlinear Sci. Numer. Simulat. 17 (2012) 555−565.
[10] M. Caputo, Linear model of dissipation whose Q is almost frequency independent − II,
Geophys. J. R. Astron. Soc. 13 (1967), 529−539.
[11] M. Du, Z. Wang and H. Hu, Measuring memory with the order of fractional
derivative, Sci. Rep. 3 (2013) 1−3.
[12] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of
dengue fever, Nonlinear Dyn. 71 (2013) 613−619.
[13] F. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations
of Fractional Order, in Fractals and Fractional Calculus in Continuum Mechanics,
Series CISM Courses and Lecture Notes, Springer Verlag, Wien, 378 (1997), 223−276.
[14] M. Hamou Maamar and O. Belhamiti, New (0,2) Jacobi multi-wavelets adaptive
method for numerical simulation of gas separations using hollow fiber membranes,
Commun. Appl. Nonlinear Anal. 22 (2015) 3, 61−81.
[15] H. A. Jalab and R. W. Ibrahim, Texture enhancement for medical images based on
fractional differential masks, Discrete Dyn. Nat. Soc. 2013, Article ID 618536, (2013),
10 pages.
[16] H. A. Jalab and R. W. Ibrahim, Texture enhancement based on the Savitzky-Golay
fractional, differential operator, Math. Probl. Eng. 2013, Article ID 149289, (2013), 8
pages.
[17] A. A. Kilbas and S. A. Marzan, Nonlinear differential equation with the caputo
fraction derivative in the space of continuously differentiable functions, Differ. Equ. 41
(2005) 84−89.
[18] J. Klafter, S. C. Lim and R. Metzler, Fractional Dynamics. Recent Advances, World
Scientific, Singapore, (2011).
[19] A. D. Khawajia, I. K. Kutubkhanaha and J. M. Wieb, Advances in seawater
desalination technologies. Desalin. 221 (2008) 47−69.
[20] K. Hakiki and O. Belhamiti, A dynamical study of fractional order obesity model by a
combined Legendre wavelet method, submited, (2016).
[21] V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential
equations, Nonlinear Anal. (2008), 2677−2682.
[22] Y. Q. Liu and J. H. Ma, Exact solutions of a generalized multi-fractional nonlinear
diffusion equation in radical symmetry, Commun. Theor. Phys. 52 (2009) 857−861.
[23] J. Lu and G. A. Chen, Note on the fractional-order Chen system, Chaos, Solitons and
Fractals 27 (2006) 685−688.
[24] C. Qing−li, H. Guo and Z. A. Xiu−qiong, Fractional differential approach to low
contrast image enhancement, Int. J. Knowledge Lang. Proces. 3 (2012) 20−29.
[25] M. Rehman and R. A. Khan, The Legendre wavelet method for solving fractional
differential equations, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 4163−4173.
[26] M. Razzaghi and S. Yousefi, Legendre wavelets direct method for variational
problems, Math. Comput. Simul. 53 (2000) 185−192.
[27] C. H. Wang, On the generalization of Block Pulse Operational matrices for fractional
and operational calculus, J. Frankin Inst. 315 (1983) 91−102.
[28] C. S. Slater, Development of a simulation model predicting performance of reverse
osmosis batch systems, Separa. Sci. Techno. 27 (1992) 1361−1388.
[29] C. S. Slater, J. M. Zielinski, R. G. Wendel and C. G. Uchrin, Modeling of small scale
reverse osmosis systems, Desalin. 52 (1985) 267−284.
[30] V. M. Starov, J. Smart and D. R. Lloyd, Performance optimization of hollow fiber
reverse osmosis membranes, Part I. Development of theory, J. Membrane Sci. 103
(1995) 257−270.
[31] J. Smart, V. M. Starov and D.R. Lloyd, Performance optimization of hollow fiber
reverse osmosis membranes. Part II. Comparative study of flow configurations, J.
Membrane Sci. 119 (1996) 117−128.