Some Relations between Morgan-Voyce Polynomials
 Kekulé Structure
 and

İNCI GÜLTEKIN ${ }^{1, \bullet}$ AND BÜNYAMIN ŞAHIN ${ }^{2}$

${ }^{1}$ Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
${ }^{2}$ Department of Elemantary Mathematics Education, Faculty of Education, Bayburt University, 69000 Bayburt, Turkey

ARTICLE INFO

Article History:
Received 2 March 2016
Accepted 9 May 2016
Published online 11 April 2017
Academic Editor: Michel Marie Deza
Keywords:
Kekulé structure
Hosoya index
Morgan-Voyce polynomials
Caterpillar trees

Abstract

In this paper, Kekulé structures of benzenoid chains are considered. It has been shown that the coefficients of a $B_{n}(x)$ Morgan Voyce polynomial equal to the number of k-matchings $(m(G, k))$ of a path graph which has $N=2 n+1$ points. Furtermore, two relations are obtained between regularly zig-zag non-branched catacondensed benzenoid chains and Morgan-Voyce polynomials and between regularly zig-zag non branched catacondensed benzenoid chains and their corresponding caterpillar trees.

© 2017 University of Kashan Press. All rights reserved

1. Introduction

A benzenoid system is obtained by using the regular hexagons consecutively so that two hexagons are either disjoint or have a common edge [1]. An example of benzenoid chain is illustrated in Figure 1.

Figure 1. A Benzenoid Chain.

In connection with the benzenoid chains the $L A$-sequence is defined as an ordered h-tuple ($h>1$) of the symbols L and A. The i-th symbol is L if the i-th hexagon is of

[^0]$\operatorname{mode} L_{1}$ or L_{2}. The i-th symbol is A if the i-th hexagon is of mode A. The definition of L_{1}, L_{2} and Amodes of hexagons is clear from Figure 2.

Figure 2. Illustration of L_{1}, L_{2} and A modes of hexagons, respectively.

For instance, the $L A$-sequence of the benzenoid chain in Figure 1 is LLLALLALLLAALL or, in the abbreviated form $L^{3} A L^{2} A L^{3} A^{2} L^{2}$. Each perfect matching of a benzenoid system (if any exists) represents a Kekulé structure. The number of Kekulé structures of benzenoid chains is called its" K number". The K-number of a benzenoid chain is calculated by its $L A$-sequence.

Balaban and Tomescu coined the term isoarithmicity for the benzenoid chains which their K numbers are same [2]. It is denoted by $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ the class of isoarithmic benzenoid chains with the $L A$-sequence

$$
L^{x_{1}} A L^{x_{2}} A \ldots A L^{x_{n}}
$$

where $n \geq 1$, and $x_{1} \geq 1, x_{n} \geq 1, x_{i} \geq 0$ for $i=2,3, \ldots, n-1$. For example isoarithmic class of the benzenoid chain which is depicted in Figure 1 is $\langle 3,2,3,0,2\rangle$.

Every benzenoid chain can be represented in this form. It is denoted by $K_{n}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ the number of Kekule structures of the chain $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.It is defined for the initial terms of the K numbers such that ([1]) $K_{0}=1, K_{1}\left\langle x_{1}\right\rangle=1+x_{1}$.

Theorem 1. If $n \geq 2$ then for arbitrary $x_{1} \geq 1, x_{n} \geq 1, x_{i} \geq 0,(i=2,3, \ldots, n-1)$, the following recurrence relation holds [1]

$$
K_{n}\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle=\left(x_{n}+1\right) K_{n-1}\left\langle x_{1}, x_{2}, \ldots, x_{n-1}\right\rangle+K_{n-2}\left\langle x_{1}, x_{2}, \ldots, x_{n-2}\right\rangle .
$$

2. The Hosoya Index and Morgan-Voyce Polynomials

The Hosoya or Z-index was defined by Hosoya in 1971 [3] and the Hosoya index of a graph G is denoted by $Z(G)$. The $Z(G)$, is the total number of k-matchings which are the number of k choosing from a graph G such that the k lines are non-adjacent where N is the number of points.

Definition 1. The number of k-matchings is denoted by $m(G, k)$ and the $Z(G)$ is defined as $Z(G)=\sum_{k=0}^{\lfloor N / 2\rfloor} m(G, k)$ such that $m(G, 0)=1$ for any graph G.

Theorem 2. The number of k-matchings of the path graph is calculated by the following equation [4]

$$
m(G, k)=\binom{N-k}{k}, \text { for } 0 \leq k \leq\lfloor N / 2\rfloor .
$$

Relations between topological indices and some orthogonal polynomials for example Hermite, Laguerre and Chebyshev polynomials were found by Hosoya ([5]). Another relation between the sextet polynomial of a hexagonal chain and the matching polynomial of a caterpillar tree was discovered by Gutman [6]. As a result of this paper, it has been shown that the K-number of a hexagonal chain is equal to the Hosoya index of the corresponding caterpillar [7]. For instance, corresponding caterpillar tree of the hexagonal chain which is depicted in Figure 1 is on the below.

Figure 3. The hexagonal chain in Figure 1 has 14 hexagons and the corresponding caterpillar tree has 14 edges.

The caterpillar tree of the hexagonal chain in Figure 3 is $C_{5}(4,3,4,1,3)$.

Definition 2. The Morgan-Voyce polynomials $B_{n}(x)$ is defined by [8] as

$$
B_{n}(x)=\sum_{i=0}^{n}\binom{n+i+1}{n-i} x^{i}
$$

and the first five Morgan-Voyce polynomials are found from this equation like that

$$
\begin{gathered}
B_{0}(x)=1 \\
B_{1}(x)=x+2 \\
B_{2}(x)=x^{2}+4 x+3 \\
B_{3}(x)=x^{3}+6 x^{2}+10 x+4 \\
B_{4}(x)=x^{4}+8 x^{3}+21 x^{2}+20 x+5 .
\end{gathered}
$$

3. Regularly Zig-Zag Non-branched Catacondensed Benzenoids

The Kekulé number of regularly zig-zag non-branched cata condensed benzenoids was found by He, He and Xie [9] by Peak-Valley matrix.

Figure 4. Dualist graph of a general non-branched cata-condensed benzenoids.

In Figure $4, a_{i} \in(i=1,2, \ldots s)$ and $b_{i} \in\left(i=1,2, \ldots s^{\prime}\right)$ where $s^{\prime}=s$ for Figure 4(a) and $s^{\prime}=s+1$ for Figure 4(b). $a_{i}+1$ and $b_{i}+1$ represent the numbers of linearly condensed six-membered rings horizontally and diagonally, respectively. For the benzenoid shown in Figure 4(a) and 4(b), the Peak-Valley matrix is as follows.

$$
A_{n}=\left[\begin{array}{ccccccc}
t_{1} & 1 & 0 & & & \\
1 & t_{2} & 1 & & & 0 & \\
0 & 1 & t_{3} & & & \\
& & & \ddots & 1 & 0 \\
& 0 & & 1 & t & -1 & 1 \\
& & & 0 & 1 & t
\end{array}\right]
$$

where $t_{i}=\left\{\begin{array}{ll}b_{k+1}+2, & \text { if } i=\sum_{j=0}^{k} a_{j}+1 \\ 2, & \text { if } i \neq \sum_{j=0}^{k} a_{j}+1\end{array}, k=1,2, \ldots, s ; i=1,2, \ldots,\right.$. Here is the number of peaks (or valleys) in a graph G. The Kekulé number of a graph G is shown by $K_{n}(G)(n=1, \ldots, \quad)$.

Figure 5. Simple binary regularly cata-condensed benzenoids.
Lemma 1. From Figure 5, the K-number of the graph G is calculated by the following tri-diagonal determinantal expression[9]:

$$
K_{\mathrm{n}}(G)=\operatorname{det} A_{n}=\left|\begin{array}{ccccccc}
b+2 & 1 & 0 & & & \\
1 & b+2 & 1 & & 0 & \\
0 & 1 & b+2 & & & 0 \\
& 0 & & \ddots & 1 & 0 \\
& 0 & & 1 & b+2 & 1 \\
& & & 1 & b+2
\end{array}\right| .
$$

The order of the above determinant is $s+1$, where s is the repeat times of horizontal linear segments on the graph G.

4. CONTINUANTS AND CATERPILLAR TREES

Lemma 2. If H is a hexagonal chain whose $L A$-sequence is $L^{x_{1}} A L^{x_{2}} A \ldots L^{x_{n-1}} A L^{x_{n}}$, then the number $K(H)$ of its Kekulé structures is equal to the Z-index of the caterpillar tree $C_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ [7].

If it is written $C(H)$ for caterpillar tree of a H hexagonal chain, Lemma 2 is equivalent to the equality $K(H)=\mathrm{Z}(C(H))$.

Definition 3.The continuants (or continuant polynomials) are introduced by Euler [10] as $L_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{n} L_{n-1}\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)+L_{n-2}\left(x_{1}, x_{2}, \ldots, x_{n-2}\right)$ with initial conditions $L_{0}()=1, L_{1}\left(x_{1}\right)=x_{1}$ and $L_{2}\left(x_{1}, x_{2}\right)=x_{1} x_{2}+1$.

From this it is shown that the Z-index of the caterpillar trees coincides with Euler 's continuant like the following lemma.

Lemma 3. $Z\left(C_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=L_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ [7].

5. MAIN Results

Theorem 3. The coefficients of a $B_{n}(x)$ Morgan-Voyce polynomial are equal to the number of k-matchings $(m(G, k))$ of a path graph which has $N=2 n+1$ points.

Proof. We denote the coefficients of Morgan-Voyce polynomials with

$$
C\left(B_{n}(x)\right)=\binom{n+i+1}{n-i}
$$

such that $0 \leq i \leq n$ and we take the point number of the path graph $N=2 n+1$. The number of k-matchings of a path graph for $0 \leq k \leq\lfloor N / 2\rfloor$ is

$$
m(G, k)=\binom{N-k}{k}
$$

and $\lfloor N / 2\rfloor=\lfloor(2 n+1) / 2\rfloor=n$ by the definition of the Hosoya index. Now we demonstrate the coefficients of the Morgan-Voyce polynomials in combinatorial form with respectively for $0 \leq i \leq n$

$$
C\left(B_{n}(x)\right)=\binom{n+1}{n},\binom{n+2}{n-1}, \ldots,\binom{2 n}{1},\binom{2 n+1}{0}
$$

and $m(G, k)=\binom{N-k}{k}$ for $0 \leq k \leq\lfloor N / 2\rfloor=n$ with respectively

$$
m(G, k)=\binom{2 n+1}{0},\binom{2 n}{1}, \ldots,\binom{n+2}{n-1},\binom{n+1}{n} .
$$

It is clear that $C\left(B_{n}(x)\right)$ and $m(G, k)$ are same in reverse order. From this we say for every $n^{\text {th }}$ degree Morgan-Voyce polynomial there is a path graph $\left(P_{N}\right)$ which has $N=2 n+1$ points such that the coefficients of the Morgan-Voyce polynomials equal to the number of $k-$ matchings of P_{N}.

Example 1. We show an application of the previous theorem for the first three Morgan-Voyce polynomials. For $B_{0}(x), C\left(B_{0}(x)\right)=1$ equals to $m(G, k)$ for $N=2 \times$ $0+1=1$. For $B_{1}(x), C\left(B_{1}(x)\right)=1,2$ equal to $m(G, k)$ for $N=2 \times 1+1=3$. For $B_{2}(x), C\left(B_{2}(x)\right)=1,4,3$ equal to $m(G, k)$ for $N=2 \times 2+1=5$.

Lemma 4. If $b_{1}+1=b_{2}+1=\cdots=b_{s}+1=b+1$ (numbers of the regular hexagons on diagonal wise are same) like in Figure 5 and we take x instead of b_{i}, then
(the right equation is used to express many properties of the Morgan-Voyce polynomials like in [8])

$$
K_{n}(G)=\operatorname{det} A_{n}=B_{n}(x) .
$$

Proof.

$$
\begin{aligned}
& \mathrm{K}_{1}(\mathrm{G})=|\mathrm{x}+2| \quad=\mathrm{x}+2 \quad=\mathrm{B}_{1}(\mathrm{x}) \\
& \begin{array}{l}
K_{2}(G)=\left|\begin{array}{cc}
x+2 & 1 \\
1 & x+2
\end{array}\right| \quad=(x+2)(x+2)-1 \quad=x^{2}+4 x+3=B_{2}(x) \\
K_{3}(G)=\left|\begin{array}{ccc}
x+2 & 1 & 0 \\
1 & x+2 & 1 \\
0 & 1 & x+2
\end{array}\right|=x^{3}+6 x^{2}+10 x+4=B_{3}(x)
\end{array}
\end{aligned}
$$

and by the determinant of the tri-diagonal matrix in Lemma 1,

$$
K_{n}(G)=B_{n}(x)=(x+2) B_{n-1}(x)-B_{n-2}(x) .
$$

In Lemma 1, the (n) indice on the notatin K_{n} is the number of the repetition of the diagonal hexagons. We also take the number of the hexagons $b_{i}+1$ on diagonal wise like the previous lemma. For Figure $5, b_{1}+1=b_{2}+1=\cdots=b_{s}+1=b+1$ and its corresponding caterpillar tree is $C_{2 n}(b+1,1, b, 1, \ldots, b, 1)$.

There is a relation between the K-number of the hexagonal chain in Figure 5 and Z-index of its corresponding caterpillar tree as noted in the next theorem.

Theorem 4. $K_{n}(G)=Z\left(C_{2 n}(G)\right)$.

Proof. Induct on n. For $n=1, K_{1}(G)=Z\left(C_{2}(b+1,1)\right)=b+2$, as desired. We assume that the equality is true for $n \leq k$ and we will show that it is true for $n=k+1$. This means

$$
K_{k+1}(G)=Z\left(C_{2 k+2}(b+1,1, b, 1, \ldots, b, 1)\right) .
$$

By assumption

$$
K_{k}(G)=Z\left(C_{2 k}(b+1,1, b, 1, \ldots, b, 1)\right)
$$

and

$$
K_{k-1}(G)=Z\left(C_{2 k-2}(b+1,1, b, 1, \ldots, b, 1)\right) .
$$

By Lemma 1,

$$
\begin{aligned}
K_{k+1}(G) & =(b+2) K_{k}(G)-K_{k-1}(G) \\
& =(b+2) Z\left(C_{2 k}(G)\right)-Z\left(C_{2 k-2}(G)\right) \\
& =b Z\left(C_{2 k}(G)\right)+2\left[Z\left(C_{2 k-1}(G)\right)+Z\left(C_{2 k-2}(G)\right)\right]-Z\left(C_{2 k-2}(G)\right) \\
& =b Z\left(C_{2 k}(G)\right)+Z\left(C_{2 k-1}(G)\right)+Z\left(C_{2 k-1}(G)\right)+Z\left(C_{2 k-2}(G)\right) \\
& =Z\left(C_{2 k+1}(G)\right)+Z\left(C_{2 k}(G)\right)=Z\left(C_{2 k+2}(G)\right)
\end{aligned}
$$

This complete the proof.

Example 2. We calculate the Kekulé number of simple binary regularly catacondensed benzenoid in Figure 5 by two ways mentioned in the Theorem 4. The matrix form of K-number of the chain shown in Figure 5 is

$$
K_{3}(G)=\left[\begin{array}{lll}
4 & 1 & 0 \\
1 & 4 & 1 \\
0 & 1 & 4
\end{array}\right]
$$

and $K_{3}(G)=\operatorname{det} A=56$. Now we use the corresponding caterpillar tree of the hexagonal chain as the follows:

Figure 6. The hexagonal chain in Figure 5 has 9 hexagons and the corresponding caterpillar tree has 9 edges.

This caterpillar tree is denoted by $C_{6}(3,1,2,1,2,1)$ and $Z\left(C_{6}(3,1,2,1,2,1)=56\right.$. So that $K_{3}(G)=Z\left(C_{6}(3,1,2,1,2,1)\right.$.

Acknowledgement

B.ŞAHİN thanks to the Scientific and Technological Research Council of Turkey (TUBITAK) for support.

References

1. R. Tošić, I. Stojmenović, Chemical graphs, Kekulé structures and Fibonacci numbers, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 25 (2) (1995) 179-195.
2. A. T. Balaban, I. Tomescu, Algebratic expressions for the number of Kekulé structure of isoarithmic cata-condensed benzenoid polycyclic hydrocarbons, MATCH Commun. Math. Comput. Chem. 14 (1983) 155-182.
3. H. Hosoya, Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332-2339.
4. H. Hosoya, Topological index and Fibonacci numbers with relation to chemistry, Fibonacci Quart. 11 (1973) 255-269.
5. H. Hosoya, Graphical and combinatorial aspects of some orthogonal polynomials, Natur. Sci. Rep. Ochanomizu Univ. 32 (2) (1981) 127-138.
6. I. Gutman, Topological properties of benzenoid systems. An identity for the sextet polynomial, Theor. Chim. Acta 45 (1977) 309-315.
7. H. Hosoya, I. Gutman, Kekulé structures of hexagonal chains-some unusual connections, J. Math. Chem. 44 (2008) 559-568.
8. T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.
9. W. J. He, W. C. He, S. L. Xie, Algebratic expressions for Kekulé structure counts of nonbranched cata-condensed benzenoid, Discrete Appl. Math. 35 (1992) 91-106.
10. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, Reading, 1989.

[^0]: -Corresponding Author (Email: shnbnymn25@ gmail.com)
 DOI: 10.22052/ijmc.2017.49481.1177

