Computing Szeged Index of Graphs on Triples

M. R. DARAFSHEH ${ }^{a}$, R. MODABERNIA ${ }^{b}$ AND M. NAMDARI ${ }^{b, \bullet}$
${ }^{\text {a }}$ School of Mathematics, College of Science, University of Tehran, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

ARTICLE INFO

Article History:
Received 20 October 2016
Accepted 3 April 2017
Published online April 52017
Academic Editor: Hassan Yousefi-Azari
Keywords:
Szeged index Intersection graph
Automorphism of graph

> ABSTRACT
> Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple connected graph with vertex set V and edge set E. The Szeged index of G is defined by $S z(G)=\sum_{e=u v \in E} n_{u}(e \mid G) n_{v}(e \mid G)$, where $n_{u}(e \mid G)$ is the number of vertices of G closer to u than v and $n_{v}(e \mid G)$ can be defined in a similar way. Let S be a set of size $n \geq 8$ and V be the set of all subsets of S of size 3 . We define three types of intersection graphs with vertex set V. These graphs are denoted by $\mathrm{G}_{\mathrm{i}}(\mathrm{n}), \mathrm{i}=0,1,2$ and we will find their Szeged indices.
> © 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let $G=(V, E)$ be a simple graph with vertex set V and edge set E. An automorphism of G is a one-to-one mapping $\sigma: V \rightarrow V$ that preserves adjacency of vertices in G. The distance between two vertices u and v is the length of a shortest path from u to v and is denoted by $d(u, v)$. A function f from the set of all graphs into real numbers is called a graph invariant if and only if $G \cong H$ implies that $f(G)=f(H)$. A graph invariant is said to be distance-based if it can be can defined by distance function $d(-,-)$. A graph invariant applicable in chemistry is called a topological index.

In recent research in mathematical chemistry, distance-based graph invariants are of particular interest. One of the oldest descriptors concerned with the molecular graph is the Wiener index, which was proposed by Wiener [8]. The definition of theWiener index in terms of distances between vertices of a graph is due to Hosoya 16].

The Szeged index [4,5,7] is a topological index closely related to the the Wiener index and coincides with the Wiener index in the case when the graph is a tree. For the

[^0]basic definition of the Szeged index of graph, let $G=(V, E)$ be a connected simple graph. Let $e=u v$ be an edge of G. We define two subsets of vertices of G as follows:
\[

$$
\begin{aligned}
& N_{u}(e \mid G)=\{w \in V \mid d(w, u)<d(w, v)\} \\
& N_{v}(e \mid G)=\{w \in V \mid d(w, v)<d(w, u)\}
\end{aligned}
$$
\]

Let $n_{u}(e \mid G)=\left|N_{u}(e \mid G)\right|$ and $n_{v}(e \mid G)=\left|N_{v}(e \mid G)\right|$. The Szeged index of the graph G is defined by the following formula:

$$
S z(G)=\sum_{e=u v \in E} n_{u}(e \mid G) n_{v}(e \mid G)
$$

We see that the Szeged index is a sum of edge-contribution for the edge $e=u v$ of the graph G, we set $s z(e)=n_{u}(e \mid G) n_{v}(e \mid G)$, hence $S z(G)=\sum_{e \in E} s z(e)$.

Let Γ denote the automorphism group of the graph G. Then Γ acts as a permutation group on the vertex set V of G. If $e=u v$ is an edge of G and $\sigma \in \Gamma$, then by defining $e^{\sigma}=u^{\sigma} v^{\sigma}$, we observe that Γ acts on the set E of edges of G. If Γ acts transitively on V, then G is called a vertex-transitive graph and if it acts transitively on E, then G is called an edge-transitive graph. We refer the reader to the book]2] for further reading about permutation groups.

In [1], the case of edge-transitive graph is studied. In this case, the edgedistribution at each edge is the same, i.e., $s z(e)=s z\left(e^{\prime}\right)$ for all edges e and e^{\prime} of G holds, hence $\quad S z(G)=|E| s z(e)$ for a single edge of G holds. The above situation is also studied in [9].

2. Preliminary Results

In this paper we are concerned with the graphs on triples. Let S be a set of size n where n is a suitable natural number. Let V be the set of all the 3-element subsets of S. The graph $\mathrm{G}_{i}, i=0,1,2$, called intersection graphs, are defined as $G=\left(V, E_{i}\right)$, where V is the set of vertices of G and two vertices are joined by an edge if and only if they intersect in i elements. It is clear that $|V|=\binom{n}{3}$ and the size of each $E_{i} ; i=0,1,2$, is $\binom{n-3}{3}, 3\binom{n-3}{2}$ and $3(n-3)$ respectively, it is worth mentioning that the Weiner indices of the graphs $G_{i} ; i=0,1,2$, were computed in [3].

Lemma 2.1. Each of the graphs $G_{i} ; i=0,1,2$, is edge-transitive.

Proof. By [3], the automorphism graph of each graph $G_{i} ; i=0,1,2$, has a subgroup isomorphic to the symmetric group S_{n}. Let $e=u v$ and $e^{\prime}=u^{\prime} v^{\prime}$ be two edges of $G_{i} ; i=0,1,2$. Then $|u \cap v|=i=\left|u^{\prime} \cap v^{\prime}\right|$.

Case 1. $i=0$. In this case we may take $u=\{1,2,3\}, v=\{4,5,6\}$, $u^{\prime}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}\right\}, v^{\prime}=\left\{4^{\prime}, 5^{\prime}, 6^{\prime}\right\} \quad$ where $\quad\left\{1^{\prime}, 2^{\prime}, \ldots, 6^{\prime}\right\} \subseteq\{1,2, \cdots, 6\} \quad$.The permutation $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1^{\prime} & 2^{\prime} & 3^{\prime} & 4^{\prime} & 5^{\prime} & 6^{\prime}\end{array}\right) \in S_{n}$ take e to e^{\prime}.

Case 2. $i=1$. In this case we may take $u=\{1,2,3\}, v=\{1,4,5\}, u^{\prime}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}\right\}, v^{\prime}=$ $\left\{1^{\prime}, 4^{\prime}, 5^{\prime}\right\}$ and choose $\sigma=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 1^{\prime} & 2^{\prime} & 3^{\prime} & 4^{\prime} & 5^{\prime}\end{array}\right) \in S_{n}$ which takes e to e^{\prime}.

Case 3. $i=2$. In this case we may choose $u=\{1,2,3\}, v=\{1,2,4\}, u^{\prime}=\left\{1^{\prime}, 2^{\prime}, 3^{\prime}\right\}$, $v^{\prime}=\left\{1^{\prime}, 2^{\prime}, 4^{\prime}\right\}$ and in this case $\sigma=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1^{\prime} & 2^{\prime} & 3^{\prime} & 4^{\prime}\end{array}\right) \in S_{n}$ takes e to e^{\prime}.

We have the following result from [3] that will be used.

Result 2.1. Let u and v be two vertices of $G_{i} ; i=0,1,2$. Then $d(u, v) \leq 2$ unless $i=2$ where $d(u, v)=3$ also occurs.

3. Computation of the Szeged Index

Now because of Lemma 2.1, we have $S z\left(G_{i}\right)=\left|\mathrm{E}_{\mathrm{i}}\right| s z(e)$, $i=0,1,2$, where $s z(e)=$ $n_{u}\left(e \mid G_{i}\right) n_{v}\left(e \mid G_{i}\right)$. By definition we have $n_{u}\left(e \mid G_{i}\right)=|\{w \in V \mid d(w, u)<d(w, v)\}|$. By the above result $d(w, v)=0,1,2$ in the case G_{1} and G_{2}.

Case 1. $d(w, v)=0$ is impossible.
Case 2. If $d(w, v)=1$, then $d(w, v)=0$ implying $w=u$.
Case3. If $d(w, v)=2$, then $d(w, v)=0$ or 1 . If $w=u$, then $d(u, v)=1$ a contradiction, hence $d(w, u)=1$. We conclude that

$$
n_{u}(e \mid G)=1+|\{v \neq w \in V \mid d(w, u)=1\}| .
$$

By symmetry we have $n_{v}(e \mid G)=n_{u}(e \mid G)$.

Corollary 3.1. The Szeged index of G_{0} and G_{1} are as follows:

$$
\begin{aligned}
& S z\left(G_{0}\right)=\binom{n-3}{3}\left(1+3\binom{n-6}{2}+3\binom{n-6}{1}\right)^{2} \\
& S z\left(G_{1}\right)=3\binom{n-3}{2}\left(1+2\binom{n-5}{2}+2\binom{n-5}{1}\right)^{2}
\end{aligned}
$$

Proof. According to what we proved earlier $S z\left(G_{i}\right)=\left|E_{i}\right| s z(e)$, where $e=u v$ is a fixed edge of $G_{i}, i=0,1$. But

$$
\begin{aligned}
s z(e) & =n_{u}(e \mid G) n_{v}(e \mid G)=n_{u}(e \mid G)^{2} \\
& =(1+|\{v \neq w \in V \mid d(w, u)=1\}|)^{2}
\end{aligned}
$$

Therefore we must find the number of vertices $w \neq v$ of V with distance 1 from u.
Case 1. $i=0$. In this case we may take $u=\{1,2,3\}$ and $v=\{4,5,6\}$, the vertex w should be of distance 2 from v , hence should meet v and $w \bigcap u=\phi$. If w meets v in one element we have $3 / 2(n-6)(n-7)$ choices for it and if it meets v in 2 elements again we have $3(n-6)$ choices for it and the formula for $S z\left(G_{0}\right)$ is obtained as above.

Case 2. $i=1$. In this case we may choose $u=\{1,2,3\}, v=\{1,4,5\}$. we have $d(w, v)=2$, hence $w \bigcap v=\phi$ or $|w \bigcap v|=2$, but $|w \bigcap u|=1$.

$$
u=\{1,2,3\} \quad v=\{1,4,5\}
$$

If $w \bigcap v=\phi$, then we have $(n-5)(n-6)$ choices for W. If $|w \bigcap v|=2$, then if $1 \in w$, we must have $w=\{1,4, x\}$ or $w=\{1,5, y\}$, hence the number of choices for w is $2(n-5)$. For $1 \notin w$ we don't obtain a possibility for w. Therefore $S z\left(G_{1}\right)$ is as above.

To calculate the Szeged index of G_{2} we must calculate the size of the set $N_{u}(e \mid G)=\{w \in V \mid d(w, u)<d(w, v)\}$.In this case $d(w, v)=3$ may occur and $d(w, u)=1$ or 2 . If $d(w, u)=1$, then $d(w, u)=2$, a contradiction. Therefore $d(w, u)=2$, i.e there is a vertex x such that $d(w, x)=1$. If we set $A_{1}=\{v \neq w \in V \mid d(w, u)=1\}$ and $A_{2}=\{w \in V \mid d(w, u)=2\}$ then we must find the sizes of A_{1} and A_{2}.

Let $u=\{1,2,3\}, v=\{1,2,4\}$ and find $\left|A_{1}\right|$.

In this case $d(w, v)=2$, hence $|w \bigcap v| \neq 2$. If $w \bigcap v=\phi$, then there is no possibility for w. If $|w \cap v|=1$, then $w=\{1,3, x\},\{2,3, x\}$, and hence the following corollary is proved. There are $2(n-4)$ possibilities for w and $\left|A_{1}\right|=2(n-4)$. To find $\left|A_{2}\right|$ we may assume again $u=\{1,2,3\}, v=\{1,2,4\}$.

The number of vertices x is $2(n-4)$. Now having chosen x the number of w with distance 1 from x is $2(n-5)$.

Corollary 3.2. For the Szeged index of G_{2} we have

$$
S z\left(G_{2}\right)=3(n-3)\left(1+2\binom{n-4}{1}+4\binom{n-4}{1}\binom{n-5}{1}\right)^{2} .
$$

References

1. M. R. Darafsheh, Computation of topological indices of some graphs, Acta. Appl. Math. 110 (2010) 1225-1235.
2. J. D. Dixon and B. Mortimer, Permutation Groups, Springer-Verley, NewYork, 1996.
3. M. Ghorbani, Computing the Wiener index of graphs on triples, Creat. Math. Inform. 24 (2015) no. 1 49-52.
4. I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cyclic, Graph Theory Notes NY. 27 (1994) 9-15.
5. I. Gutman and A. A. Dobrynin, The Szeged index-asuccess story, Graph Theory Notes NY. 34 (1998) 37-44.
6. H. Hosoya, Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons, Bull. Chem. Soc. Japan. 44 (1971) 2332-2339.
7. P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrinin, I. Gutman and G. Domotor, The Szeged index and analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (1995) 547-550.
8. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17-20.
9. J. Zerovnik, Szeged index of symmetric graphs, J. Chem. Inf. Comput. Sci. 39 (1999) 77-80.

[^0]: ${ }^{\bullet}$ Corresponding Author (Email: namdari@ipm.ir)
 DOI: 10.22052/ijmc.2017.80007.1275

