Iranian Journal of Mathematical Chemistry

Journal homepage: ijmc.kashanu.ac.ir

Computing Szeged Index of Graphs on Triples

M. R. DARAFSHEH^a, R. MODABERNIA^b AND M. NAMDARI^{b,•}

^a School of Mathematics, College of Science, University of Tehran, Tehran, Iran ^bDepartment of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran

ARTICLE INFO

ABSTRACT

Article History:	Let G=(V,E) be a simple connected graph with vertex set V and
Received 20 October 2016	edge set E. The Szeged index of G is defined by
Accepted 3 April 2017	$Sz(G) = \sum_{e=uv \in E} n_u(e G)n_v(e G)$, where $n_u(e/G)$ is the number
Published online April 5 2017	of vertices of G closer to u than v and $n_v(e/G)$ can be defined in a
Academic Editor: Hassan Yousefi-Azari	similar way. Let S be a set of size $n \ge 8$ and V be the set of all
Keywords:	subsets of S of size 3. We define three types of intersection graphs
Szeged index	with vertex set V. These graphs are denoted by G _i (n), i=0,1,2 and
Intersection graph	we will find their Szeged indices.
Automorphism of graph	© 2017 University of Kashan Press. All rights reserved

1. INTRODUCTION

Let G = (V, E) be a simple graph with vertex set V and edge set E. An automorphism of G is a one-to-one mapping $\sigma: V \to V$ that preserves adjacency of vertices in G. The distance between two vertices u and v is the length of a shortest path from u to v and is denoted by d(u,v). A function f from the set of all graphs into real numbers is called a graph invariant if and only if $G \cong H$ implies that f(G) = f(H). A graph invariant is said to be *distance-based* if it can be can defined by distance function d(-,-). A graph invariant applicable in chemistry is called a *topological index*.

In recent research in mathematical chemistry, distance–based graph invariants are of particular interest. One of the oldest descriptors concerned with the molecular graph is the *Wiener index*, which was proposed by Wiener [8]. The definition of the Wiener index in terms of distances between vertices of a graph is due to Hosoya]6].

The *Szeged index* [4,5,7] is a topological index closely related to the Wiener index and coincides with the Wiener index in the case when the graph is a tree. For the

[•]Corresponding Author (Email: namdari@ipm.ir)

DOI: 10.22052/ijmc.2017.80007.1275

basic definition of the Szeged index of graph, let G = (V,E) be a connected simple graph. Let e = uv be an edge of *G*. We define two subsets of vertices of *G* as follows:

$$N_u(e \mid G) = \{ w \in V \mid d(w, u) < d(w, v) \}$$

$$N_v(e \mid G) = \{ w \in V \mid d(w, v) < d(w, u) \}$$

Let $n_u(e | G) = |N_u(e | G)|$ and $n_v(e | G) = |N_v(e | G)|$. The Szeged index of the graph *G* is defined by the following formula:

$$Sz(G) = \sum_{e=uv \in E} n_u(e \mid G) n_v(e \mid G)$$

We see that the Szeged index is a sum of edge–contribution for the edge e = uv of the graph G, we set $sz(e) = n_u(e | G)n_v(e | G)$, hence $Sz(G) = \sum_{e \in E} sz(e)$.

Let Γ denote the automorphism group of the graph *G*. Then Γ acts as a permutation group on the vertex set *V* of *G*. If e = uv is an edge of *G* and $\sigma \in \Gamma$, then by defining $e^{\sigma} = u^{\sigma}v^{\sigma}$, we observe that Γ acts on the set *E* of edges of *G*. If Γ acts transitively on *V*, then *G* is called a vertex-transitive graph and if it acts transitively on *E*, then *G* is called an edge-transitive graph. We refer the reader to the book [2] for further reading about permutation groups.

In [1], the case of edge-transitive graph is studied. In this case, the edgedistribution at each edge is the same, i.e., sz(e) = sz(e') for all edges *e* and *e'* of *G* holds, hence Sz(G) = |E| sz(e) for a single edge of *G* holds. The above situation is also studied in [9].

2. **PRELIMINARY RESULTS**

In this paper we are concerned with the graphs on triples. Let *S* be a set of size *n* where *n* is a suitable natural number. Let *V* be the set of all the 3-element subsets of *S*. The graph G_{i} , i = 0, 1, 2, called intersection graphs, are defined as $G = (V, E_i)$, where *V* is the set of vertices of *G* and two vertices are joined by an edge if and only if they intersect in *i* elements. It is clear that $|V| = \binom{n}{3}$ and the size of each E_i ; i = 0, 1, 2, is $\binom{n-3}{3}, 3\binom{n-3}{2}$ and 3(n-3) respectively, it is worth mentioning that the Weiner indices of the graphs G_i ; i = 0, 1, 2, were computed in [3].

Lemma 2.1. Each of the graphs G_i ; i = 0, 1, 2, is edge-transitive.

Proof. By [3], the automorphism graph of each graph G_i ; i = 0, 1, 2, has a subgroup isomorphic to the symmetric group S_n . Let e = uv and e' = u'v' be two edges of G_i ; i = 0, 1, 2. Then $|u \cap v| = i = |u' \cap v'|$.

Case 1. i = 0. In this case we may take $u = \{1, 2, 3\}, v = \{4, 5, 6\},$ $u' = \{1', 2', 3'\}, v' = \{4', 5', 6'\}$ where $\{1', 2', \dots, 6'\} \subseteq \{1, 2, \dots, 6\}$. The permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1' & 2' & 3' & 4' & 5' & 6' \end{pmatrix} \in S_n$ take *e* to *e'*.

Case 2. i = 1. In this case we may take $u = \{1,2,3\}, v = \{1,4,5\}, u' = \{1', 2', 3'\}, v' = \{1', 4', 5'\}$ and choose $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1' & 2' & 3' & 4' & 5' \end{pmatrix} \in S_n$ which takes e to e'.

Case 3. i = 2. In this case we may choose $u = \{1,2,3\}, v = \{1,2,4\}, u' = \{1', 2', 3'\},$ $v' = \{1', 2', 4'\}$ and in this case $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1' & 2' & 3' & 4' \end{pmatrix} \in S_n$ takes e to e'.

We have the following result from [3] that will be used.

Result 2.1. Let *u* and *v* be two vertices of G_i ; i = 0, 1, 2. Then $d(u, v) \le 2$ unless i = 2 where d(u, v) = 3 also occurs.

3. COMPUTATION OF THE SZEGED INDEX

Now because of Lemma 2.1, we have $Sz(G_i) = |E_i|sz(e), i = 0, 1, 2$, where $sz(e) = n_u(e|G_i)n_v(e|G_i)$. By definition we have $n_u(e|G_i) = |\{w \in V \mid d(w,u) < d(w,v)\}|$. By the above result d(w,v) = 0, 1, 2 in the case G_1 and G_2 .

Case 1. d(w, v) = 0 is impossible.

Case 2. If d(w, v) = 1, then d(w, v) = 0 implying w = u.

Case3. If d(w,v) = 2, then d(w,v) = 0 or 1. If w = u, then d(u,v) = 1 a contradiction, hence d(w,u) = 1. We conclude that

 $n_u(e \mid G) = 1 + |\{v \neq w \in V \mid d(w, u) = 1\}|.$

By symmetry we have $n_v(e \mid G) = n_u(e \mid G)$.

Corollary 3.1. The Szeged index of G_0 and G_1 are as follows:

$$S_{Z}(G_{0}) = {\binom{n-3}{3}} {\binom{1+3\binom{n-6}{2}+3\binom{n-6}{1}}{2}}^{2}$$
$$S_{Z}(G_{1}) = 3{\binom{n-3}{2}} {\binom{1+2\binom{n-5}{2}+2\binom{n-5}{1}}{2}}^{2}$$

Proof. According to what we proved earlier $Sz(G_i) = |E_i| sz(e)$, where e = uv is a fixed edge of G_i , i = 0, 1. But

$$sz(e) = n_u(e \mid G) n_v(e \mid G) = n_u(e \mid G)^2$$
$$= (1 + |\{v \neq w \in V \mid d(w, u) = 1\}|)^2$$

Therefore we must find the number of vertices $w \neq v$ of V with distance 1 from u.

Case 1. i = 0. In this case we may take $u = \{1, 2, 3\}$ and $v = \{4, 5, 6\}$, the vertex w should be of distance 2 from v, hence should meet v and $w \cap u = \phi$. If w meets v in one element we have 3/2(n - 6)(n - 7) choices for it and if it meets v in 2 elements again we have 3(n - 6) choices for it and the formula for $Sz(G_0)$ is obtained as above.

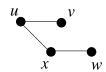
Case 2. i = 1. In this case we may choose $u = \{1, 2, 3\}, v = \{1, 4, 5\}$. we have d(w, v) = 2, hence $w \cap v = \phi$ or $|w \cap v| = 2$, but $|w \cap u| = 1$.

$$u = \{1, 2, 3\}$$
 $v = \{1, 4, 5\}$

 \dot{w}

If $w \cap v = \phi$, then we have (n - 5)(n - 6) choices for W. If $|w \cap v| = 2$, then if $1 \in w$, we must have $w = \{1, 4, x\}$ or $w = \{1, 5, y\}$, hence the number of choices for w is 2(n - 5). For $1 \notin w$ we don't obtain a possibility for w. Therefore $Sz(G_1)$ is as above.

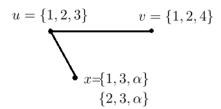
To calculate the Szeged index of G_2 we must calculate the size of the set $N_u(e \mid G) = \{w \in V \mid d(w,u) < d(w,v)\}$. In this case d(w,v) = 3 may occur and d(w,u) = 1 or 2. If d(w,u) = 1, then d(w,u) = 2, a contradiction. Therefore d(w,u) = 2, i.e there is a vertex x such that d(w,x) = 1. If we set $A_1 = \{v \neq w \in V \mid d(w,u) = 1\}$ and $A_2 = \{w \in V \mid d(w,u) = 2\}$ then we must find the sizes of A_1 and A_2 .



Let $u = \{1, 2, 3\}$, $v = \{1, 2, 4\}$ and find $|A_1|$.

$$u = \{1, 2, 3\}$$
 $v = \{1, 2, 4\}$

In this case d(w,v) = 2, hence $|w \cap v| \neq 2$. If $w \cap v = \phi$, then there is no possibility for *w*. If $|w \cap v| = 1$, then $w = \{1,3,x\}, \{2,3,x\}$, and hence the following corollary is proved. There are 2(n-4) possibilities for *w* and $|A_1| = 2(n-4)$. To find $|A_2|$ we may assume again $u = \{1,2,3\}, v = \{1,2,4\}$.



The number of vertices x is 2(n - 4). Now having chosen x the number of w with distance 1 from x is 2(n - 5).

$$u = \{1, 2, 3\} \qquad v = \{1, 2, 4\}$$

$$x = \{1, 3, \alpha\} \qquad w = \{1, \alpha, \beta\}$$

$$\{3, \alpha, \beta\}$$

Corollary 3.2. For the Szeged index of G_2 we have

$$S_{Z}(G_{2}) = 3(n-3)\left(1+2\binom{n-4}{1}+4\binom{n-4}{1}\binom{n-5}{1}\right)^{2}.$$

REFERENCES

- 1. M. R. Darafsheh, Computation of topological indices of some graphs, *Acta. Appl. Math.* **110** (2010) 1225–1235.
- 2. J. D. Dixon and B. Mortimer, *Permutation Groups*, Springer–Verley, NewYork, 1996.

- 3. M. Ghorbani, Computing the Wiener index of graphs on triples, *Creat. Math. Inform.* **24** (2015) no.1 49–52.
- 4. I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cyclic, *Graph Theory Notes NY*. **27** (1994) 9–15.
- 5. I. Gutman and A. A. Dobrynin, The Szeged index-asuccess story, *Graph Theory Notes NY*. **34** (1998) 37–44.
- 6. H. Hosoya, Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons, *Bull. Chem. Soc. Japan.* **44** (1971) 2332–2339.
- P. V. Khadikar, N. V. Deshpande, P. P. Kale, A. Dobrinin, I. Gutman and G. Domotor, The Szeged index and analogy with the Wiener index, *J. Chem. Inf. Comput. Sci.* 35 (1995) 547–550.
- H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17–20.
- 9. J. Zerovnik, Szeged index of symmetric graphs, J. Chem. Inf. Comput. Sci. 39 (1999) 77-80.