[1] U. Ananthakrishnaiah, P–stable Obrechkoff methods with minimal phase–lag for periodic initial value problems, Math. Comput. 49 (1987) 553–559.
[2] M. Asadzadeh, D. Rostamy and F. Zabihi, Discontinuous Galerkin and multiscale variational schemes for a coupled damped nonlinear system of Schrödinger equations, J. Numer. Methods Partial Differential Equations 29 (6) (2013) 1912–1945.
[3] M. M. Chawla, P. S. Rao, A Numerov–type method with minimal phase–lag for the integration of second order periodic initial value problems. II: Explicit method, J. Comput. Appl. Math. 15 (1986) 329–337.
[4] M. M. Chawla, P. S. Rao, An explicit sixth–order method with phase–lag of order eight for , J. Comput. Appl. Math. 17 (1987) 363–368.
[5] G. Dahlquist, On accuracy and unconditional stability of linear multistep methods for second order differential equations, BIT 18 (1978) 133–136.
[6] J. M. Franco, An explicit hybrid method of Numerov type for second–order periodic initial–value problems, J. Comput. Appl. Math. 59 (1995) 79–90.
[7] J. M. Franco, M. Palacios, High–order P–stable multistep methods, J. Comput. Appl. Math. 30 (1990) 1–10.
[8] W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math. 3 (1961) 381–397.
[9] A. Ibraheem, T. E. Simos, A family of high–order multistep methods with vanished phase–lag and its derivatives for the numerical solution of the Schrödinger equation, Comput. Math. Appl. 62 (2011) 3756–3774.
[10] A. Ibraheem, T. E. Simos, A family of ten–step methods with vanished phase–lag and its first derivative for the numerical solution of the Schrödinger equation, J. Math. Chem. 49 (2011) 1843–1888.
[11] A. Ibraheem, T. E. Simos, Mulitstep methods with vanished phase–lag and its first and second derivatives for the numerical integration of the Schrödinger equation, J. Math. Chem. 48 (2010) 1092–1143.
[12] L. Gr. Ixaru, M. Rizea, A Numerov–like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies, Comput. Phys. Commun. 19 (1) (1980) 23–27.
[13] M. K. Jain, R. K. Jain and U. Krishnaiah, Obrechkoff methods for periodic initial value problems of second order differential equations, J. Math. Phys. Sci. 15 (1981) 239–250.
[14] J. D. Lambert, I. A. Watson, Symmetric multistep methods for periodic initial value problems, IMA J. Appl. Math. 18 (1976) 189–202.
[15] G. D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits, Astron. J. 100 (1990) 1694–1700.
[16] D. P. Sakas, T. E. Simos, Multiderivative methods of eighth algebraic order with minimal phase–lag for the numerical solution of the radial Schrödinger equation, J. Comput. Appl. Math. 175 (2005) 161–172.
[17] A. Shokri, H. Saadat, Trigonometrically fitted high–order predictor–corrector method with phase–lag of order infinity for the numerical solution of radial Schrödinger equation, J. Math. Chem. 52 (2014) 1870–1894.
[18] A. Shokri, H. Saadat, High phase–lag order trigonometrically fitted two–step Obrechkoff methods for the numerical solution of periodic initial value problems, Numer. Algor. 68 (2015) 337–354.
[19] A. Shokri, A. A. Shokri, Sh. Mostafavi, H. Saadat, Trigonometrically fitted two-step Obrechkoff methods for the numerical solution of periodic initial value problems, Iranian J. Math. Chem. 6 (2015) 145-161.
[20] T. E. Simos, A P-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems, Proc. Roy. Soc. London Ser. A. 441 (1993) 283–289.
[21] T. E. Simos, A two–step method with vanished phase–lag and its first two derivatives for the numerical solution of the Schrödinger equation, J. Math. Chem. 49 (2011) 2486–2518.
[22] T. E. Simos, Exponentially fitted multiderivative methods for the numerical solution of the Schrödinger equation, J. Math. Chem. 36 (2004) 13–27.
[23] T. E. Simos, Multiderivative methods for the numerical solution of the Schrödinger equation, MATCH Commun. Math. Comput. Chem. 50 (2004) 7–26.
[24] E. Steifel, D. G. Bettis, Stabilization of Cowells methods, Numer. Math. 13 (1969) 154–175.
[25] R. M. Thomas, Phase properties of high order, almost P–stable formulae, BIT 24 (1984) 225–238.
[26] M. Van Daele, G. Vanden Berghe, P-stable exponentially fitted Obrechkoff methods of arbitrary order for second order differential equations, Numer. Algor. 46 (2007) 333–350.
[27] Z. Wang, D. Zhao, Y. Dai and D. Wu, An improved trigonometrically fitted P–stable Obrechkoff method for periodic initial value problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461 (2005) 1639–1658.