On the Forgotten Topological Index

Ahmad Khaksari ${ }^{1}$ and MODJTABA Ghorbani ${ }^{\boldsymbol{0}}{ }^{\mathbf{2}}$
${ }^{1}$ Department of M athematics, Payame Noor University, Tehran, 19395-3697, I. R. Iran
${ }^{2}$ Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran

ARTICLE INFO

Article History:
Received 13 August 2016
Accepted 15 September 2016
Published online 24 February 2017
Academic Editor: Ivan Gutman

Keywords:

Zagreb indices Forgotten index
Graph products

ABSTRACT

The forgotten topological index of a graph G is defined as $F(G)=$ $\Sigma_{u \in V(G)} d(u)^{3}$. In this paper, we compute some properties of forgotten index and then we determine it for some classes of product graphs.

1. Introduction

All graphs considered in this paper are undirected and finite without loops and multiple edges. Denoted by $V(G)$ and $E(G)$, we mean the set of vertices and the set of edges of graph G, respectively and suppose $n=|\mathrm{V}(G)|, m=|E(G)|$. Two vertices are adjacent if and only if they are connected by an edge.

The Wiener index [17] is the first reported distance based topological index defined as half sum of the distances between all the pairs of vertices in a molecular graph [10,16]. Topological indices are abundantly being used in the $Q S P R$ and $Q S A R$ researches. So far, many various types of topological indices have been described.

Furtula and Gutman, in [4] introduced a new topological index namely, forgotten topological index and it is clearly stated that the forgotten index is a special case of the earlier much studied general first Zagreb index. They also established a few basic properties of it, see for example [1]. In 2014 unexpected chemical application of the F index was discovered and it is proved that the forgotten topological index can significantly enhance the physico-chemical applicability of the first Zagreb index.

[^0]
2. Notation and Definitions

There are two Zagreb indices [10]: the first M_{1} and the second M_{2}, can be defined as:

$$
\begin{equation*}
M_{1}=M_{1}(G)=\sum_{u \in V(G)} d(u)^{2} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{2}=M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v) \tag{2}
\end{equation*}
$$

respectively. The first Zagreb index can be rewritten also as

$$
\begin{equation*}
M_{1}=M_{1}(G)=\sum_{u v \in E(G)}[d(u)+d(v)] . \tag{3}
\end{equation*}
$$

For more details on these topological indices we refer to $[8,11,14,16,18]$. With this notation, the F - index is defined as $[4,5]$

$$
\begin{equation*}
F=F(G)=\sum_{u \in V(G)} d(u)^{3}=\sum_{u v \in E(G)}\left[d(u)^{2}+d(v)^{2}\right] . \tag{4}
\end{equation*}
$$

In [7] it is shown that some topological indices have one of the following three algebraic forms:

$$
\begin{align*}
& T I_{1}=T I_{1}(G)=\sum_{v \in V(G)} F_{1}(v) \tag{5}\\
& T I_{1}=T I_{1}(G)=\sum_{u v \in E(G)} F_{2}(u, v) \tag{6}\\
& T I_{1}=T I_{1}(G)=\sum_{\{u, v\} \subseteq V(G), u \neq v} F_{3}(u, v) \tag{7}
\end{align*}
$$

where F_{1}, F_{2} and F_{3} are functions dependent of a vertex or on a pair of vertices of the molecular graph G and the forgotten index is of the form Eq. (5).

In 2006, bearing in mind Eqs. (1) and (2), Dosslić [2] put forward the concept of the first and second Zagreb coindices, defined as

$$
\begin{equation*}
\bar{M}_{1}=\bar{M}_{1}(G)=\sum_{u v \boxtimes V(G)}[d(u)+d(v)] \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{M}_{2}=\bar{M}_{2}(G)=\sum_{u v \notin E(G)} d(u) d(v) \tag{9}
\end{equation*}
$$

respectively, see also [9]. In formulas (8) and (9) it is assumed that $x \neq y$. In full analogy with Eqs. (8), and (9), relying on Eq. (4), we can now define the F-coindex as

$$
\begin{equation*}
C o-F=C o-F(G)=\sum_{u \vee \notin E(G)}\left[d(u)^{2}+d(v)^{2}\right] . \tag{10}
\end{equation*}
$$

Let α is an arbitrary real number, the generalized version of the first Zagreb index is defined in $[12,13]$ as follows:

$$
\begin{equation*}
M_{\alpha}=M_{\alpha}(G)=\sum_{u \in V(G)} d(u)^{\alpha}=\sum_{u v \in E(G)}\left[d(u)^{\alpha-1}+d(v)^{\alpha-1}\right] \tag{11}
\end{equation*}
$$

The generalized first Zagreb index was studied in several works such as $[6,15]$ and the aim of this paper is to investigate the properties of $M_{a}(G)$ where $\alpha=3$.

The Zagreb and forgotten co-indices of a graph G and of its complement \bar{G} can be represented in terms of the Zagreb indices of G and forgotten index, respectively. The respective formulas are given in [5,9].

3. Results and Discussions

In this section, we propose several bounds for the F-index and then we compute the F index of some composite graphs. Throughout this paper we use standard notations of graph theory. The path, star, wheel and complete graphs with n vertices are denoted by P_{n}, S_{n}, W_{n} and K_{n}, respectively.

An automorphism of the graph G is a bijection σ on which preserves the edge set E, i.e. if $e=u v$ is an edge of G, then $e^{\sigma}=u^{\sigma} v^{\sigma}$ is a member of E, where the image of vertex u is denoted by u^{σ}. We denote the set of all automorphisms of G by $\operatorname{Aut}(G)$ and this set under the composition of mappings forms a group. This group acts on the set of vertices, if for any pair of vertices $u, v \in V$, there is an automorphism $\alpha \in \operatorname{Aut}(G)$ such that $u^{\sigma}=v$. An isomorphism of graphs G and H is a bijection $\alpha: V(G) \rightarrow V(H)$ such that $u v \in E(G)$ if and only if $\alpha(u) \alpha(v) \in E(H)$. Two isomorphic graphs G and H are denoted by $G \cong H$.

Theorem 1. Let G be a graph with orbits $V_{l}, V_{2}, \ldots, V_{r}$ under action of $\operatorname{Aut}(G)$ on the set of vertices $V(G)$. Then for $u_{i} \in V_{i}$, we have

$$
F(G)=\sum_{i=1}^{r}\left|V_{i}\right| \mathrm{d}\left(u_{i}\right)^{3} .
$$

Proof. Let $V_{l}, V_{2}, \ldots, V_{r}$ be all orbits of $\operatorname{Aut}(G)$ on the set of vertices. It is a well-known fact that for two vertices $x, y \in V_{i}, \mathrm{~d}(x)=\mathrm{d}(y)$. Then one can verify that

$$
F(G)=\sum_{\mathrm{i}=1}^{\mathrm{r}} \sum_{u \in V_{i}} \mathrm{~d}(u)^{3}=\sum_{i=1}^{r}\left|V_{i}\right| \mathrm{d}\left(u_{i}\right)^{3} .
$$

As an application of Theorem 1, consider the dendrimer D with r layers as depicted in Figure 1. The vertex degrees of this graph are 1 and 3, thus, it is bi-regular. The vertices of every layer are in the same orbit under the action of automorphism graph on the set of vertices. Hence,

$$
F(G)=\sum_{i=1}^{r}\left|V_{i}\right| \mathrm{d}\left(u_{i}\right)^{3}=\sum_{i=1}^{r-1}\left|V_{i}\right| 3^{3}+\left|V_{r}\right| .
$$

This graph has $1+3+2.3+2^{2} .3+\cdots+2^{r} .3=1+3\left(2^{r+1}-1\right)$ vertices in which the last layer has $2^{r} .3$ vertices. Hence,

$$
F(G)=27\left[1+\sum_{i=0}^{r-1}\left|V_{i}\right|\right]+\left|V_{r}\right|
$$

This means that $F(G)=3.2^{r}+27\left[1+3\left(2^{r}-1\right)\right]=84.2^{r}-54$.

Figure 1. 2- D Graph of Dendrimer D.

Theorem 2. Let G be a graph on n vertices, then

$$
F(G) \leq M_{1}(G)^{2}-2 M_{2}(G) \leq M_{1}(G)^{3} .
$$

Proof. We have

$$
F(G)=\sum_{u \in V} \mathrm{~d}(u)^{3} \leq\left[\sum_{u \in V} \mathrm{~d}(u)\right]^{3}=M_{1}(G)^{3} .
$$

On the other hand,

$$
\begin{aligned}
F(G) & =\sum_{u v \in E(G)}\left[d(u)^{2}+d(v)^{2}\right] \\
& =\sum_{u v \in E(G)}\left[(d(u)+d(v))^{2}-2 d(u) d(v)\right] \\
& \leq M_{1}(G)^{2}-2 M_{2}(G) .
\end{aligned}
$$

For two positive integers x and y, it is clear that x^{3} is greater than $x^{2}-2 y$ and the proof is completed.

Theorem 3. Let G be a graph on n vertices, then

$$
\bar{F}(G)+F(G) \geq 2\left[M_{2}(G)+\bar{M}_{2}(G)\right] .
$$

Proof. For every pair of vertices $u, v \in V$, we have $(d(u)-d(v)) \geq 0$, hence $d(u)^{2}+d(v)^{2} \geq d(u) d(v)$ and then $F(G) \geq 2 M_{2}(G)$. By a similar way, we can deduce that $\bar{F}(G) \geq 2 \bar{M}_{2}(G)$. This confirms our claim.

Theorem 4. Let G be a graph on n vertices, m edges and maximum degree Δ. Then

$$
\bar{F}(G)+F(G) \leq(n-1) M_{1}(G)+\Delta^{2} m(n-3) .
$$

Proof. For each edge $u v \in E(G)$ and for a vertex $u \in V(G)$, the $n-1-d(u)$ vertices are non-adjacent with the vertex u. Let Δ be the maximum degree of G. For $u w \notin E(G)$, we have $d(u)+d(w) \leq[d(u)+\Delta][n-1-d(u)]$. So,

$$
\begin{aligned}
\bar{F}(G) & =\sum_{u w \notin E(G)} d(u)^{2}+d(w)^{2} \\
& \leq \sum_{u w \notin E(G)}\left[d(u)^{2}+\Delta^{2}\right][n-1-d(u)] \\
& =(n-1) M_{1}(G)-F(G)+\Delta^{2}(n-1) m-\Delta^{2} 2 m .
\end{aligned}
$$

Hence,

$$
\bar{F}(G) \leq(n-1) M_{1}(G)-F(G)+\Delta^{2} m(n-3) .
$$

Theorem 5. Let u, v be two vertices of graph G. Let $G^{*}=G-\left\{v v_{1}, \ldots, v v_{s}\right\}+\left\{u v_{1}, \ldots, u v_{s}\right\}$. If $d(u)+s>d(v)$ then $F\left(G^{*}\right)>F(G)$.

Proof. Let $\mathrm{d}_{G}(u)=d(u)$, for every vertex $x \in V \backslash\{u, v\}$, we have

$$
d_{G^{*}}(u)=d_{G}(u)+s, d_{G^{*}}^{*}(v)=d_{G}(v)-s, d_{G^{*}}^{*}(x)=d_{G}(x) .
$$

Hence, by the definition of F-index, we have

$$
\begin{aligned}
F\left(G^{*}\right)-F(G) & =d_{G^{*}}(u)^{3}+d_{G^{*}}(v)^{3}-d_{G}(u)^{3}-d_{G}(v)^{3} \\
& =\left(d_{G}(u)+s\right)^{3}+\left(d_{G}(v)-s\right)^{3}-d_{G}(u)^{3}-d_{G}(v)^{3} \\
& =3 s d_{G}(u)\left(s+d_{G}(u)\right)+3 s d_{G}(v)\left(d_{G}(v)-s\right) .
\end{aligned}
$$

Clearly $F\left(G^{*}\right)-F(G)>0$ if and only if $d_{G}(u)\left(s+d_{G}(u)\right)+d_{G}(v)\left(d_{G}(v)-s\right)>0$. On the other hand, $\left\{v_{1}, \ldots, v_{s}\right\} \subseteq N(v) \backslash N[u]$ implies that $d_{G}(v)-s>0$ and so

$$
d_{G}(u)\left(s+d_{G}(u)\right)+d_{G}(v)\left(d_{G}(v)-s\right)>0 .
$$

The following bounds for the forgotten topological index were proposed in [5]:

$$
F(G) \geq \frac{M_{1}(G)}{2 m}
$$

$$
\begin{aligned}
& F(G) \geq \frac{M_{1}(G)^{2}}{m}-2 M_{2}(G), \\
& F(G) \leq 2 M_{2}(G)+m(n-1)^{2}
\end{aligned}
$$

Here, we establish some new bounds.

Theorem 6. Let G be a graph on n vertices and m edges. Then

$$
F(G) \geq \max \left\{6 m-2 n, 8 m^{3} / n^{2}\right\} .
$$

Proof. According to Bernoulli inequality, for every integer $\alpha \geq 1$, we have $(1+x)^{\alpha} \geq 1+\alpha x$. Let $x=d\left(u_{i}\right)-1$, then $d\left(u_{i}\right)^{3} \geq 1+3\left(d\left(u_{i}\right)-1\right)=3 d\left(u_{i}\right)-2$. This means that $F(G) \geq 6 m-2 n$. On the other hand, Let x_{1}, \ldots, x_{n} be real numbers. Then, it is a well-known fact that

$$
\frac{\sum_{i-1}^{n} x_{i}^{k}}{n} \geq\left(\frac{\sum_{i-1}^{n} x_{i}}{n}\right)^{k}
$$

By putting $k=3$ we have $F(G) \geq 8 m^{3} / n^{2}$. This completes the proof.
Theorem 7. Let G be a graph on n vertices, m edges, minimum degree δ and maximum degree Δ. Then

$$
F(G) \geq 6 M_{1}(G)+3 n-12 m-\frac{2 n}{\delta+1}\left(\frac{4}{(\delta+1)^{2}}+3(\Delta-1)^{2}+\frac{6(\Delta-1)}{\delta+1}\right)
$$

Proof. For every real number a, we can prove that

$$
\frac{a^{2}+1}{a+1} \geq \sqrt[3]{\frac{a^{3}+1}{2}}
$$

Thus

$$
a^{3} \leq 2\left(\frac{a^{2}+1}{a+1}\right)^{3}-1 .
$$

This implies that

$$
\begin{aligned}
F(G) & =\sum_{i=1}^{n} d\left(u_{i}\right)^{3} \leq 2 \sum_{i=1}^{n}\left(\frac{d\left(u_{i}\right)^{2}+1}{d\left(u_{i}\right)+1}\right)^{3}-n=2 \sum_{i=1}^{n}\left(\frac{d\left(u_{i}\right)^{2}-1+2}{d\left(u_{i}\right)+1}\right)^{3}-n \\
& =2\left[\left(\sum_{i=1}^{n} d\left(u_{i}\right)^{3}-3 \sum_{i=1}^{n} d\left(u_{i}\right)^{2}+3 \sum_{i=1}^{n} d\left(u_{i}\right)-n\right)\right] \\
& +\left[8 \sum_{i=1}^{n} \frac{1}{\left(1+d\left(u_{i}\right)\right)^{3}}+6 \sum_{i=1}^{n} \frac{\left(d\left(u_{i}\right)-1\right)^{2}}{\left(1+d\left(u_{i}\right)\right)}+12 \sum_{i=1}^{n} \frac{\left(d\left(u_{i}\right)-1\right)}{\left(1+d\left(u_{i}\right)\right)^{2}}\right]-n .
\end{aligned}
$$

But $d\left(u_{i}\right) \geq 1$, and so

$$
F(G) \leq 2\left[\left(F(G)-3 M_{1}(G)+6 m-n\right)+\frac{8 n}{(\delta+1)^{3}}+6 \sum_{i=1}^{n} \frac{(\Delta-1)^{2}}{\delta+1}+12 n \frac{(\Delta-1)}{(\delta+1)^{2}}\right]-n
$$

Thus, the proof is completed.
Let G be a connected graph with n vertices and A be its adjacency matrix, where $\lambda_{1}, \ldots, \lambda_{n}$ are its eigenvalues. The k-th spectral moment of G is defined as $\sum_{i-1}^{n} \lambda_{i}^{k}$ and it is equal to the number of all closed walks of length k in G. Similarly, if μ_{1}, \ldots, μ_{n} are Laplacian eigenvalues, than the k-th Laplacian spectral moment is as follows:

$$
S_{k}=\sum_{i-1}^{n} \lambda_{i}^{k} .
$$

Theorem 8 ([5]) If the graph G is triangle-free, then

$$
F(G)=\sum_{x y \in E(G)}[d(x)-d(y)]^{2}-2 M_{1}(G)+4 m+\sum_{i=1}^{n} \sum_{j=1}^{n}\left(A^{3}\right)_{i j}
$$

where \mathbf{A} is the adjacency matrix of G.

Theorem 9. Let G be a connected graph, then

$$
F(G)=S_{3}-3 M_{1}(G)+6 t .
$$

Proof. Let D be a diagonal matrix whose entries are the degree of vertices in G. We have

$$
\begin{aligned}
\sum_{i=1}^{n} \mu_{i}^{3} & =\operatorname{tr}(D-A)^{3}=\operatorname{tr}\left(D^{3}-A^{3}+3 A^{2} D\right) \\
& =\sum_{i=1}^{n} d\left(u_{i}\right)^{3}+3 \sum_{i=1}^{n} d\left(u_{i}\right)^{2}-6 t .
\end{aligned}
$$

Thus for the k-th spectral moment we have

$$
F(G)=S_{3}-3 \sum_{i=1}^{n} d\left(u_{i}\right)^{2}+6 t=S_{3}-3 M_{1}(G)+6 t .
$$

Corollary 10. Let G be a triangular-free graph, then

$$
F(G)=S_{3}-3 M_{1}(G) .
$$

4. Computing the F-Index of some Graph Products

In this section we present explicit formulas for the F-index of several classes of graphs that arise via binary graph operations known as graph products. We start from the most common operation, the Cartesian product. The disjunction and the symmetric difference share many properties with the Cartesian product: they have the same vertex sets, they are
commutative and associative; hence they are considered next. The join of two or more graphs is also a commutative operation, but defined on the union instead on the Cartesian product of the vertex sets of the components.

4.1 Cartesian Product

The Cartesian product $G \times H$ of graphs G and H is a graph such that $V(G \times H)=V(G) \times V(H)$, and any two vertices (a, b) and (u, v) are adjacent in $G \times H$ if and only if either $\mathrm{a}=u$ and b is adjacent with v, or $b=v$ and a is adjacent with u. The degree of a vertex $\left(u_{1}, u_{2}\right)$ of $G_{1} \times G_{2}$ is the sum of the degrees of its projections to the respective components,

$$
d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right) .
$$

Theorem 11. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
F\left(G_{1} \times G_{2}\right)=n_{2} F\left(G_{1}\right)+n_{1} F\left(G_{2}\right)+6 m_{2} M_{1}\left(G_{1}\right)+6 m_{1} M_{1}\left(G_{2}\right) .
$$

Proof. For $\left(u_{1}, u_{2}\right) \in G_{1} \times G_{2}$, we have $d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)$. This means that

$$
\begin{aligned}
F\left(\mathrm{G}_{1} \times \mathrm{G}_{2}\right) & =\sum_{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathrm{G}_{1} \times \mathrm{G}_{2}} d^{3}{ }_{G_{G_{1} \times G_{2}}}\left(u_{1}, u_{2}\right)=\sum_{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathrm{G}_{1} \times \mathrm{G}_{2}}\left[d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)\right]^{3} \\
& =\sum_{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right) \in \mathrm{G}_{1} \times \mathrm{G}_{2}} d^{3}{ }_{G_{G_{1}}}\left(u_{1}\right)+d^{3}{ }_{G_{2}}\left(u_{2}\right)+3 d_{G_{1}}\left(u_{1}\right) d_{G_{2}}\left(u_{2}\right)\left[d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)\right] \\
& =n_{2} F\left(\mathrm{G}_{1}\right)+n_{1} F\left(\mathrm{G}_{2}\right)+6 m_{2} M_{1}\left(\mathrm{G}_{1}\right)+6 m_{1} M_{1}\left(\mathrm{G}_{2}\right) .
\end{aligned}
$$

4.2 SyMmetric DIfFERENCE AND DISJUNCTION

The disjunction $G \vee H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ in which (u_{1}, u_{2}) is adjacent with $\left(v_{1}, v_{2}\right)$ whenever u_{1} is adjacent with v_{1} in G or u_{2} is adjacent with v_{2} in H. If $|V(G)|=n_{1},|E(G)|=m_{1},|V(H)|=n_{2},|E(H)|=m_{2}$, the degree of a vertex $\left(u_{1}, u_{2}\right)$ of $G \vee H$ is given by $\mathrm{d}_{G \vee H}\left(\left(u_{1}, u_{2}\right)\right)=n_{2} \mathrm{~d}_{G}\left(u_{1}\right)+n_{1} \mathrm{~d}_{H}\left(u_{2}\right)-\mathrm{d}_{G}\left(u_{1}\right) \mathrm{d}_{H}\left(u_{2}\right)$.

Theorem 12. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
F\left(G_{1} \vee G_{2}\right)=n_{2}^{2} F\left(G_{1}\right)+n_{1}^{2} F\left(G_{2}\right)-4 m_{1} m_{2} .
$$

Proof. We have

$$
\begin{aligned}
F\left(G_{1} \vee G_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right) \in G_{1} \vee G_{2}} d^{3} G_{G_{1} \vee G_{2}}(u)=n_{1} \sum_{u \in G_{1}} d_{G_{2}}^{3}\left(u_{2}\right)-\sum_{u_{1} \in G_{1}} d_{G_{1}}\left(u_{1}\right) \sum_{u_{2} \in G_{2}} d_{G_{2}}\left(u_{2}\right) \\
& =n_{2}^{2} F\left(G_{1}\right)+n_{1}^{2} F\left(G_{2}\right)-4 m_{1} m_{2} .
\end{aligned}
$$

The symmetric difference $G \oplus H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ in which $\left(u_{1}, u_{2}\right)$ is adjacent with $\left(v_{1}, v_{2}\right)$ whenever u_{1} is adjacent with v_{1} in G
or u_{2} is adjacent with v_{2} in H, but not both. It follows from the definition that the degree of a vertex $\left(u_{1}, u_{2}\right)$ of $G \oplus H$ is given by

$$
d_{G \oplus H}\left(\left(u_{1}, u_{2}\right)\right)=n_{2} d_{G}\left(u_{1}\right)+n_{1} d_{H}\left(u_{2}\right)-2 d_{G}\left(u_{1}\right) d_{H}\left(u_{2}\right) .
$$

Theorem 13. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
F\left(G_{1} \oplus G_{2}\right)=n_{1}^{2} F\left(G_{2}\right)+n_{2}^{2} F\left(G_{1}\right)-8 m_{1} m_{2} .
$$

Proof. The proof is similar to the proof of Theorem 12.

4.3 JOIN

The join $G=G_{1}+G_{2}$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} is the graph union $G_{1} \cup G_{2}$ together with all the edges joining V_{1} and V_{2}. Let n_{1} and n_{2} be number of vertices of G_{1} and G_{2}, respectively. Then

$$
d_{G_{1}+G_{2}}(u)=\left\{\begin{array}{l}
d_{G_{1}}(u)+n_{2} \\
d_{G_{2}}(u)+n_{1}
\end{array} .\right.
$$

Theorem 14. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
F\left(G_{1}+G_{2}\right)=F\left(G_{1}\right)+F\left(G_{2}\right)+n_{1} n_{2}^{3}+n_{1}^{3} n_{2}+3 n_{2} M_{1}\left(G_{1}\right)+3 n_{1} M_{1}\left(G_{2}\right)+3 n_{1} m_{2}+3 n_{2} m_{1} .
$$

Proof. We have

$$
\begin{aligned}
F\left(G_{1}+G_{2}\right) & =\sum_{u \in G_{1}+G_{2}} d_{G_{1}+G_{2}}(u)=\sum_{u \in G_{1}}\left(d_{G_{1}}(u)+n_{2}\right)^{3}+\sum_{u \in G_{2}}\left(d_{G_{2}}(u)+n_{1}\right)^{3} \\
& =F\left(G_{1}\right)+F\left(G_{2}\right)+n_{1} n_{2}^{3}+n_{1}^{3} n_{2}+3 n_{2} M_{1}\left(G_{1}\right)+3 n_{1} M_{1}\left(G_{2}\right)+3 n_{1} m_{2}+3 n_{2} m_{1} .
\end{aligned}
$$

4.4 COMPOSITION

The composition $G=G_{1}\left[G_{2}\right]$ of graphs G_{1} and G_{2} with disjoint vertex sets V_{1} and V_{2} such that $\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$ and edge sets E_{1} and E_{2} such that $\left|E_{1}\right|=m_{1},\left|E_{2}\right|=m_{2}$ is the graph with vertex set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ is adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever u_{1} is adjacent with v_{1} or $u_{1}=v_{1}$ and u_{2} is adjacent with v_{2}. It follows from the definition that the degree of a vertex $\left(u_{1}, u_{2}\right)$ of $G_{1}\left[G_{2}\right]$ is given by

$$
d_{G_{1}\left[G_{2}\right]}\left(\left(u_{1}, u_{2}\right)\right)=n_{2} d_{G_{1}}\left(u_{1}\right)+n_{1} d_{G_{2}}\left(u_{2}\right) .
$$

Theorem 15. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
F\left(G_{1}\left[G_{2}\right]\right)=n_{2}^{3} F\left(G_{1}\right)+F\left(G_{2}\right)+6 n_{2}^{2} m_{2} M_{1}\left(G_{1}\right)+6 n_{2} m_{1} M_{1}\left(G_{2}\right) .
$$

Proof. We have

$$
\begin{aligned}
F\left(G_{1}\left[G_{2}\right]\right) & =\sum_{\left(u_{1}, u_{2}\right) \in G_{1}\left[G_{2}\right]} d^{3} G_{G_{1}\left[G_{2}\right]}(u)=\sum_{u \in G_{1}}\left[n_{2} d_{G_{1}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right)\right]^{3} \\
& =n_{2}^{3} F\left(G_{1}\right)+F\left(G_{2}\right)+6 n_{2}^{2} m_{2} M_{1}\left(G_{1}\right)+6 n_{2} m_{1} M_{1}\left(G_{2}\right) .
\end{aligned}
$$

4.5 Corona Product

The corona $G_{1} \mathrm{O} G_{2}$ was defined by Frucht and Harary [3] as the graph G obtained by taking one copy of G_{1} of order p_{1} and p_{1} copies of G_{2}, and then joining the i-th node of G_{1} to every node in the i-th copy of G_{2}, see Figure 2 . Suppose p_{1}, p_{2}, q_{1} and q_{2} are the number of vertices and the number of edges of graphs G_{1} and G_{2}, respectively. It is easy to see that the number of vertices and the number of edges of $G_{1} \mathrm{O} G_{2}$ are $p_{1}\left(1+p_{2}\right)$ and $q_{1}+p_{1} q_{2}+p_{1} p_{2}$, respectively.

Figure 2. The Corona Product $G_{1} \circ G_{2}$.
Example 1. For the graphs $G_{1}=K_{2}$ and $G_{2}=P_{3}$, the two different coronas $G_{1} \mathrm{o} G_{2}$ and $G_{2} \mathrm{O} G_{1}$ are shown in Figure 3.

Figure 3. (a) The Corona Product $K_{2} \mathrm{O} P_{3}$ and (b) $P_{3} \mathrm{O} K_{2}$.
Theorem 16. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
F\left(G_{1} o G_{2}\right)=F\left(G_{1}\right)+n_{1} F\left(G_{2}\right)+n_{1} n_{2}^{3}+3 n_{2} M_{1}\left(G_{1}\right)+6 n_{2}^{2} m_{1}+n_{1} n_{2}+3 n_{1} M_{1}\left(G_{2}\right)+6 n_{1} m_{2} .
$$

Proof. It is not difficult to see that

$$
d_{G_{1} O G_{2}}(a)=\left\{\begin{array}{ll}
d_{G_{1}}(a)+n_{2} & a \in V\left(G_{1}\right) \\
d_{G_{2}}(u)+1 & a \in V\left(G_{2}\right)
\end{array} .\right.
$$

This means that

$$
\begin{aligned}
F\left(G_{1} o G_{2}\right) & =\sum_{u \in G_{1} o G_{2}} d_{G_{1} O G_{2}}^{3}(u)=\sum_{u \in G_{1}} d_{G_{1}}^{3}(u)+\sum_{i=1}^{n_{1}} \sum_{u \in G_{i}} d_{G_{i}}^{3}(u) \\
& =F\left(G_{1}\right)+n_{1} F\left(G_{2}\right)+n_{1} n_{2}^{3}+3 n_{2} M_{1}\left(G_{1}\right)+6 n_{2}^{2} m_{1}+n_{1} n_{2}+3 n_{1} M_{1}\left(G_{2}\right)+6 n_{1} m_{2} .
\end{aligned}
$$

4.6 Tensor Product

For given graphs G_{1} and G_{2} their tensor product $G_{1} \otimes G_{2}$ is defined as the graph on the vertex set $V\left(G_{1}\right) \times V\left(G_{2}\right)$ with vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ connected by an edge if and only if either $u_{1} v_{1} \in E\left(G_{1}\right)$ and $u_{2} v_{2} \in E\left(G_{2}\right)$, see Figure 4 . In other words, $G_{1} \otimes G_{2}$ has exactly $n_{1} n_{2}$ vertices and $2 m_{1}+2 m_{2}-12$ edges, where n_{1}, n_{2} are the number of vertices and m_{1}, m_{2} are the number of edges of G_{1} and G_{2}, respectively.

Figure 4. The Tensor Product $P_{3} \otimes P_{5}$.
Theorem 17. Let $G_{i}(i=1,2)$ be a graph on n_{i} vertices and m_{i} edges. Then

$$
\begin{aligned}
F\left(G_{1} \otimes G_{2}\right) & =n_{1} F\left(G_{2}\right)+n_{2} F\left(G_{1}\right)+F\left(G_{1}\right) F\left(G_{2}\right)+3\left[2 m_{2}\left(M_{1}\left(G_{1}\right)+F\left(G_{1}\right)\right)+2 m_{1} M_{1}\left(G_{2}\right)\right. \\
+ & \left.F\left(G_{1}\right) M_{1}\left(G_{2}\right)+F\left(G_{2}\right) M_{1}\left(G_{1}\right)\right]+6 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)
\end{aligned}
$$

Proof. Notice that the degree of every vertex of the tensor product can be computed as

$$
\mathrm{d}_{G_{1} \otimes G_{2}}\left(u_{1}, u_{2}\right)=\mathrm{d}_{G_{1}}\left(u_{1}\right)+\mathrm{d}_{G_{2}}\left(u_{2}\right)+\mathrm{d}_{G_{1}}\left(u_{1}\right) \mathrm{d}_{G_{2}}\left(u_{2}\right) .
$$

Similar to the proof of Theorem 11, the proof is straightforward.

ACKNOWLEDGMENT. The authors are indebted to Professor Boris Furtula for reading the first draft of this paper and for giving us his valuable comments. This work is supported by Shahid Rajaee Teacher Training University under grant number 27774.

References

1. K. C. Das and I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem. 52 (2004) 103-112.
2. T. Došslić, Vertex-weighted Wiener polynomials for composite graphs, Ars Math. Contemp. 1 (2008) 66-80.
3. R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322-324.
4. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
5. B. Furtula, I. Gutman, Ž. K. Vukićević ,G. Lekishvili and G. Popivoda, On an old/new degree-based topological index, Bull. Acad. Serb. Sci. Arts (Cl. Sci. Math. Natur.) 148 (2015) 19-31.
6. I. Gutman, An exceptional property of first Zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014) 733-740.
7. I. Gutman, Edge decomposition of topological indices, Iranian. J. Math. Chem. 6 (2015) 103-108.
8. I. Gutman and K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004) 83-92.
9. I. Gutman, B. Furtula, Ž. Kovijanić Vukićević and G. Popivoda, On Zagreb indices and coindices, MATCH Commun. Math. Comput. Chem. 74 (2015) 5-16.
10. I. Gutman, B. Ruščić, N. Trinajstić and C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
11. A. Ilić and D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681-687.
12. X. Li and H. Zhao, Trees with the first smallest and largest generalized topological indices, MATCH Commun. Math. Comput. Chem. 50 (2004) 57-62.
13. X. Li and J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 195-208.
14. S. Nikolić, G. Kovačević, A. Miličević and N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
15. G. Su, L. Xiong and L. Xu, The Nordhaus-Gaddum - type inequalities for the Zagreb index and coindex of graphs, Appl. Math. Lett. 25 (2012) 1701 - 1707.
16. R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
17. H. Wiener, Structural determination of the paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
18. B. Zhou and N. Trinajstić, Some properties of the reformulated Zagreb index, J. Math. Chem. 48 (2010) 714-719.

[^0]: -Author to whom correspondence should be addressed (E-mail: mghorbani@ srttu.edu).
 DOI: 10.22052/ijmc.2017.43481

