Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagons. Furthermore, as corollaries, the expected values of the well-known topological indices: Wiener index, hyper-Wiener index and Tratch-Stankevitch-Zefirov index of a random benzenoid chain with $n$ hexagons can be obtained by simple mathematical calculations, which generates the results given by I. Gutman et al. [Wiener numbers of random benzenoid chains, Chem. Phys. Lett. 173 (1990) 403-408].
Xu, S., He, Q., Zhou, S., & Chan, W. (2016). Hosoya Polynomials of Random Benzenoid Chains. Iranian Journal of Mathematical Chemistry, 7(1), 29-38. doi: 10.22052/ijmc.2016.11867
MLA
S.-J. Xu; Q.-H. He; S. Zhou; W. H. Chan. "Hosoya Polynomials of Random Benzenoid Chains", Iranian Journal of Mathematical Chemistry, 7, 1, 2016, 29-38. doi: 10.22052/ijmc.2016.11867
HARVARD
Xu, S., He, Q., Zhou, S., Chan, W. (2016). 'Hosoya Polynomials of Random Benzenoid Chains', Iranian Journal of Mathematical Chemistry, 7(1), pp. 29-38. doi: 10.22052/ijmc.2016.11867
VANCOUVER
Xu, S., He, Q., Zhou, S., Chan, W. Hosoya Polynomials of Random Benzenoid Chains. Iranian Journal of Mathematical Chemistry, 2016; 7(1): 29-38. doi: 10.22052/ijmc.2016.11867