A Note on Vertex-Edge Wiener Indices of Graphs

Mahdieh Azari
Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran
Correspondence should be addressed to azari@kau.ac.ir, mahdie.azari@gmail.com
Received 3 April 2015; Accepted 4 May 2015
Academic Editor: Ali Reza Ashrafi

> ABSTRACT The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances $D_{1}(u, e \mid G)$ and $D_{2}(u, e \mid G)$ between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices $W_{v e_{1}}(G)$ and $W_{v e_{2}}(G)$ were introduced. In this paper, we present exact formulas for computing the vertex-edge Wiener indices of two composite graphs named splice and link.

KEYWORDS Distance in graph • vertex-edge Wiener index • Splice •Link.

1. INTRODUCTION

The graphs considered in this paper are undirected, finite and simple. A topological index (also known as graph invariant) is any function on a graph that does not depend on a labeling of its vertices. The oldest topological index is the one put forward in 1947 by Harold Wiener [1,2] nowadays referred to as the Wiener index. Wiener used his index for the calculation of the boiling points of alkanes. The Wiener index $W(G)$ of a connected graph G is defined as the sum of distances between all pairs of vertices of G :

$$
W(G)=\sum_{\{u, v\} \subseteq V(G)^{d}(u, v \mid G),},
$$

where $d(u, v \mid G)$ denotes the distance between the vertices u and v of G which is defined as the length of any shortest path in G connecting them. Details on the mathematical properties of the Wiener index and its applications in chemistry can be found in [1-8].

In analogy with definition of the Wiener index, the vertex-edge Wiener indices are defined based on distance between vertices and edges of a graph [9,10]. Two possible distances between a vertex u and an edge $e=a b$ of a connected graph G can be considered.

The first distance is denoted by $D_{1}(u, e \mid G)$ and defined as [9]:

$$
D_{1}(u, e \mid G)=\min \{d(u, a \mid G), d(u, b \mid G)\},
$$

and the second one is denoted by $D_{2}(u, e \mid G)$ and defined as [10]:

$$
D_{2}(u, e \mid G)=\max \{d(u, a \mid G), d(u, b \mid G)\} .
$$

Based on these two distances, two vertex-edge versions of the Wiener index can be introduced. The first and second vertex-edge Wiener indices of G are denoted by $W_{v e_{1}}(G)$ and $W_{v e_{2}}(G)$, respectively, and defined as $W_{v e_{i}}(G)=\sum_{u \in V(G)} \Sigma_{e \in E(G)} D_{i}(u, e \mid G)$, where $i \in\{1,2\}$. It should be explained that, the vertex-edge Wiener index introduced in [9] is half of the first vertex-edge Wiener index $W_{v e_{1}}$. However, in the above summation, for every vertex u and edge e of G, the distance $D_{i}(u, e \mid G)$ is taken exactly one time into account, so the summation does not need to be multiplied by a half. The first and second vertex-edge Wiener indices are also known as minimum and maximum indices, and denoted by $\operatorname{Min}(G)$ and $\operatorname{Max}(G)$, respectively. Since these indices are considered as the vertex-edge versions of the Wiener index, their present names and notations seem to be more appropriate.

In $[10,11]$, the vertex-edge Wiener indices of some chemical graphs were computed and in [12,13], the behavior of these indices under some graph operations were investigated. In this paper, we present exact formulas for the first and second vertex-edge Wiener indices of two composite graphs named splice and link. Readers interested in more information on computing topological indices of splice and link of graphs, can be referred to [12,14-20].

2. ReSUlTS AND DISCUSSION

In this section, we compute the first and second vertex-edge Wiener indices of splice and link of graphs. We start by introducing some notations.

Let G be a connected graph. For $u \in V(G)$, we define:

$$
\begin{aligned}
d(u \mid G) & =\sum_{v \in V(G)} d(u, v \mid G), \\
D_{i}(u \mid G) & =\sum_{e \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\} .
\end{aligned}
$$

With the above definitions,

$$
\begin{aligned}
W(G) & =\frac{1}{2} \sum_{u \in V /(G)} d(u \mid G), \\
W_{v e_{i}}(G) & =\sum_{u \in V(G)} D_{i}(u \mid G), \quad i \in\{1,2\} .
\end{aligned}
$$

2.1 Splice

Let G_{1} and G_{2} be two connected graphs with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. For given vertices $a_{1} \in V\left(G_{1}\right)$ and $a_{2} \in V\left(G_{2}\right)$, a splice [17] of G_{1} and G_{2} by vertices a_{1} and a_{2} is denoted by $\left(G_{1} . G_{2}\right)\left(a_{1}, a_{2}\right)$ and defined by identifying the vertices a_{1} and a_{2} in the union of G_{1} and G_{2}. We denote by n_{i} and m_{i} the order and size of the graph G_{i}, respectively. It is easy to see that, $\left|V\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=n_{1}+n_{2}-1$ and $\left|E\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=m_{1}+m_{2}$.

In the following lemma, the distance between two arbitrary vertices of $\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)$ is computed. The result follows easily from the definition of the splice of graphs, so its proof is omitted.

Lemma 2.1 Let $u, v \in V\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
d\left(u, v \mid\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)=\left\{\begin{array}{ll}
d\left(u, v \mid G_{1}\right) & u, v \in V\left(G_{1}\right) \\
d\left(u, v \mid G_{2}\right) & u, v \in V\left(G_{2}\right) \\
d\left(u, a_{1} \mid G_{1}\right)+d\left(a_{2}, v \mid G_{2}\right) & u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)
\end{array} .\right.
$$

In the following lemma, the distances D_{1} and D_{2} between vertices and edges of $\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Lemma 2.2 Let $u \in V\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)$ and $e \in E\left(\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
D_{i}\left(u, e \mid\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)\right)=\left\{\begin{array}{ll}
D_{i}\left(u, e \mid G_{1}\right) & u \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\
D_{i}\left(u, e \mid G_{2}\right) & u \in V\left(G_{2}\right), e \in E\left(G_{2}\right) \\
d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right) & u \in V\left(G_{1}\right), e \in E\left(G_{2}\right) \\
d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right) & u \in V\left(G_{2}\right), e \in E\left(G_{1}\right)
\end{array},\right.
$$

where $i \in\{1,2\}$.
Proof. Using Lemma 2.1, the proof is obvious.
In the following theorem, the first and second vertex-edge Wiener indices of $\left(G_{1} \cdot G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Theorem 2.3 The first and second vertex-edge Wiener indices of $G=\left(G_{1} . G_{2}\right)\left(a_{1}, a_{2}\right)$ are given by:

$$
\begin{aligned}
W_{v e_{i}}(G) & =W_{v e_{i}}\left(G_{1}\right)+W_{v e_{i}}\left(G_{2}\right)+m_{2} d\left(a_{1} \mid G_{1}\right)+m_{1} d\left(a_{2} \mid G_{2}\right) \\
& +\left(n_{2}-1\right) D_{i}\left(a_{1} \mid G_{1}\right)+\left(n_{1}-1\right) D_{i}\left(a_{2} \mid G_{2}\right),
\end{aligned}
$$

where $i \in\{1,2\}$.
Proof. By definition of the vertex-edge Wiener indices,

$$
W_{v e_{i}}(G)=\sum_{u \in V(G)} \sum_{e \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\} .
$$

Now, we partition the above sum into four sums as follows:
The first sum S_{1} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{1}\right)$ and edges from $E\left(G_{1}\right)$. Using Lemma 2.2, we obtain:

$$
S_{1}=\sum_{u \in V\left(G_{1}\right) e \in E\left(G_{1}\right)} \sum_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right)} \sum_{e \in E\left(G_{1}\right)} D_{i}\left(u, e \mid G_{1}\right)=W_{v e_{i}}\left(G_{1}\right) .
$$

The second sum S_{2} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and edges from $E\left(G_{2}\right)$. Similar to the previous case, we obtain:

$$
S_{2}=\sum_{u \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{2}\right)} D_{i}\left(u, e \mid G_{2}\right)=W_{v e_{i}}\left(G_{2}\right) .
$$

The third sum S_{3} consists of contributions to $W_{v_{i}}(G)$ of vertices from $V\left(G_{1}\right) \backslash\left\{a_{1}\right\}$ and edges from $E\left(G_{2}\right)$. Using Lemma 2.2, we obtain:

$$
\begin{aligned}
S_{3} & =\sum_{u \in V\left(G_{1}\right) \backslash\left\{a_{1}\right\}} \sum_{\} \in E\left(G_{2}\right)} D_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right) \backslash\left\{a_{1}\right\}} \sum_{e \in E\left(G_{2}\right)}\left[d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right)\right] \\
& =m_{2} d\left(a_{1} \mid G_{1}\right)+\left(n_{1}-1\right) D_{i}\left(a_{2} \mid G_{2}\right) .
\end{aligned}
$$

The last sum S_{4} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right) \backslash\left\{a_{2}\right\}$ and edges from $E\left(G_{1}\right)$. Similar to the previous case, we obtain:

$$
\begin{aligned}
S_{4} & =\sum_{u \in V\left(G_{2}\right)\left\{\left\{a_{2}\right\}\right.} \sum_{e \in E\left(G_{1}\right)}\left[d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right)\right] \\
& =m_{1} d\left(a_{2} \mid G_{2}\right)+\left(n_{2}-1\right) D_{i}\left(a_{1} \mid G_{1}\right) .
\end{aligned}
$$

Now the formula of $W_{v e_{i}}(G), i \in\{1,2\}$, is obtained by adding the quantities S_{1}, S_{2}, S_{3} and S_{4}.

2.2 Link

Let G_{1} and G_{2} be two connected graphs with disjoint vertex sets $V\left(G_{1}\right)$ and $V\left(G_{2}\right)$ and edge sets $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$, respectively. For vertices $a_{1} \in V\left(G_{1}\right)$ and $a_{2} \in V\left(G_{2}\right)$, a link [17] of G_{1} and G_{2} by vertices a_{1} and a_{2} is denoted by $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ and obtained by joining a_{1} and a_{2} by an edge in the union of these graphs. We denote by n_{i} and m_{i} the order and size of the graph G_{i}, respectively. It is easy to see that, $\left|V\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=n_{1}+n_{2}$ and $\left|E\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)\right|=m_{1}+m_{2}+1$.

In the following lemma, the distance between two arbitrary vertices of $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ is computed. The result follows easily from the definition of the link of graphs, so its proof is omitted.

Lemma 2.4 Let $u, v \in V\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
d\left(u, v \mid\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)=\left\{\begin{array}{ll}
d\left(u, v \mid G_{1}\right) & u, v \in V\left(G_{1}\right) \\
d\left(u, v \mid G_{2}\right) & u, v \in V\left(G_{2}\right) \\
d\left(u, a_{1} \mid G_{1}\right)+d\left(a_{2}, v \mid G_{2}\right)+1 & u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)
\end{array} .\right.
$$

In the following lemma, the distances D_{1} and D_{2} between vertices and edges of $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Lemma 2.5 Let $u \in V\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)$ and $e \in E\left(\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)$. Then

$$
D_{i}\left(u, e \mid\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)\right)= \begin{cases}D_{i}\left(u, e \mid G_{1}\right) & u \in V\left(G_{1}\right), e \in E\left(G_{1}\right) \\ D_{i}\left(u, e \mid G_{2}\right) & u \in V\left(G_{2}\right), e \in E\left(G_{2}\right) \\ d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right)+1 & u \in V\left(G_{1}\right), e \in E\left(G_{2}\right) \\ d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right)+1 & u \in V\left(G_{2}\right), e \in E\left(G_{1}\right) \\ d\left(u, a_{1} \mid G_{1}\right)+i-1 & u \in V\left(G_{1}\right), e=a_{1} a_{2} \\ d\left(u, a_{2} \mid G_{2}\right)+i-1 & u \in V\left(G_{2}\right), e=a_{1} a_{2}\end{cases}
$$

where $i \in\{1,2\}$.
Proof. Using Lemma 2.4, the proof is obvious.
In the following theorem, the first and second vertex-edge Wiener indices of $\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ are computed.

Theorem 2.6 The first and second vertex-edge Wiener indices of $G=\left(G_{1} \sim G_{2}\right)\left(a_{1}, a_{2}\right)$ are given by:

$$
\begin{aligned}
W_{v e_{i}}(G)= & W_{v e_{i}}\left(G_{1}\right)+W_{v e_{i}}\left(G_{2}\right)+\left(m_{2}+1\right) d\left(a_{1} \mid G_{1}\right)+\left(m_{1}+1\right) d\left(a_{2} \mid G_{2}\right) \\
& +n_{2} D_{i}\left(a_{1} \mid G_{1}\right)+n_{1} D_{i}\left(a_{2} \mid G_{2}\right)+n_{1} m_{2}+n_{2} m_{1}+\left(n_{1}+n_{2}\right)(i-1),
\end{aligned}
$$

where $i \in\{1,2\}$.
Proof. By definition of the vertex-edge Wiener indices,

$$
W_{v e_{i}}(G)=\sum_{u \in V(G) \in \in E(G)} D_{i}(u, e \mid G), \quad i \in\{1,2\} .
$$

Now, we partition the above sum into six sums as follows:
The first sum S_{1} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{1}\right)$ and edges from $E\left(G_{1}\right)$. Using Lemma 2.5, we obtain:

$$
S_{1}=\sum_{u \in V\left(G_{1}\right) \in \in E\left(G_{1}\right)} \sum_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right) \in e \in\left(G_{1}\right)} D_{i}\left(u, e \mid G_{1}\right)=W_{v v_{i}}\left(G_{1}\right) .
$$

The second sum S_{2} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and edges from $E\left(G_{2}\right)$. Similar to the previous case, we obtain:

$$
S_{2}=\sum_{u \in V\left(G_{2}\right) e \in E\left(G_{2}\right)} \sum_{i}\left(u, e \mid G_{2}\right)=W_{v e_{i}}\left(G_{2}\right) .
$$

The third sum S_{3} consists of contributions to $W_{\text {vei }}(G)$ of vertices from $V\left(G_{1}\right)$ and edges from $E\left(G_{2}\right)$. Using Lemma 2.5, we obtain:

$$
\begin{aligned}
S_{3} & =\sum_{u \in V\left(G_{1}\right)} \sum_{e \in E\left(G_{2}\right)} D_{i}(u, e \mid G)=\sum_{u \in V\left(G_{1}\right)} \sum_{e \in E\left(G_{2}\right)}\left[d\left(u, a_{1} \mid G_{1}\right)+D_{i}\left(a_{2}, e \mid G_{2}\right)+1\right] \\
& =m_{2} d\left(a_{1} \mid G_{1}\right)+n_{1} D_{i}\left(a_{2} \mid G_{2}\right)+n_{1} m_{2} .
\end{aligned}
$$

The fourth sum S_{4} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and edges from $E\left(G_{1}\right)$. Similar to the previous case, we obtain:

$$
\begin{aligned}
S_{4} & =\sum_{u \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{1}\right)}\left[d\left(u, a_{2} \mid G_{2}\right)+D_{i}\left(a_{1}, e \mid G_{1}\right)+1\right] \\
& =m_{1} d\left(a_{2} \mid G_{2}\right)+n_{2} D_{i}\left(a_{1} \mid G_{1}\right)+n_{2} m_{1} .
\end{aligned}
$$

The fifth sum S_{5} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{1}\right)$ and the edge $a_{1} a_{2}$ of G. By Lemma 2.5, we obtain:

$$
\begin{aligned}
S_{5}=\sum_{u \in V\left(G_{1}\right)} \sum_{e=a_{1} a_{2}} D_{i}(u, e \mid G) & = \begin{cases}\sum_{u \in V(G)} d\left(u, a_{1} \mid G_{1}\right) & i=1 \\
\sum_{u \in V(G)}\left(d\left(u, a_{1} \mid G_{1}\right)+1\right) & i=2\end{cases} \\
& = \begin{cases}d\left(a_{1} \mid G_{1}\right) & i=1 \\
d\left(a_{1} \mid G_{1}\right)+n_{1} & i=2\end{cases}
\end{aligned}
$$

The last sum S_{6} consists of contributions to $W_{v e_{i}}(G)$ of vertices from $V\left(G_{2}\right)$ and the edge $a_{1} a_{2}$ of G. Similar to the previous case, we obtain:

$$
S_{6}=\sum_{u \in V\left(G_{2}\right)} \sum_{e=a_{1} a_{2}} D_{i}(u, e \mid G)=\left\{\begin{array}{ll}
d\left(a_{2} \mid G_{2}\right) & i=1 \\
d\left(a_{2} \mid G_{2}\right)+n_{2} & i=2
\end{array} .\right.
$$

Now the formula of $W_{v e_{i}}(G), i \in\{1,2\}$, is obtained by adding the quantities S_{1}, $S_{2}, S_{3}, S_{4}, S_{5}$ and S_{6}.

ACKNOWLEDGMENTS

The author would like to thank the referee for his/her valuable comments.

References

1. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947) 17-20.
2. H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons, J. Am. Chem. Soc. 69 (1947) 2636-2638.
3. A. R. Ashrafi, Wiener index of nanotubes, toroidal fullerenes and nanostars, In: F. Cataldo, A. Graovac, O. Ori (Eds.), The Mathematics and Topology of Fullerenes, Springer Netherlands, Dordrecht, 2011, pp. 21-38.
4. M. V. Diudea, Wiener index of dendrimers, MATCH Commun. Math. Comput. Chem. 32 (1995) 71-83.
5. I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36(A) (1997) 128-132.
6. A. Iranmanesh, Y. Alizadeh and S. Mirzaie, Computing Wiener polynomial, Wiener index and hyper Wiener index of C_{80} fullerene by GAP program, Fullerenes, Nanotubes, Carbon Nanostruct. 17(5) (2009) 560-566.
7. M. Knor, P. Potočnik and R. Škrekovski, Wiener index of iterated line graphs of trees homeomorphic to H, Discrete Math. 313 (2013) 1104-1111.
8. A. Nikseresht and Z. Sepasdar, On the Kirchhoff and the Wiener indices of graphs and block decomposition, Electron. J. Combin. 21(1) (2014) \# P1.25.
9. M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 11491163.
10. M. Azari, A. Iranmanesh and A. Tehranian, Two topological indices of three chemical structures, MATCH Commun. Math. Comput. Chem. 69 (2013) 69-86.
11. M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011) 113-128.
12. M. Azari and A. Iranmanesh, Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori, In: I. Gutman (Ed.), Topics in Chemical Graph Theory, University of Kragujevac, Kragujevac, 2014, pp. 69-90.
13. M. Azari, A. Iranmanesh and A. Tehranian, Maximum and minimum polynomials of a composite graph, Austral. J. Basic Appl. Sci. 5(9) (2011) 825-830.
14. A. R. Ashrafi, A. Hamzeh and S. Hosseinzadeh, Calculation of some topological indices of splices and links of graphs, J. Appl. Math. Inf. 29 (2011) 327-335.
15. M. Azari, Sharp lower bounds on the Narumi-Katayama index of graph operations, Appl. Math. Comput. 239C (2014) 409-421.
16. M. Azari, A. Iranmanesh and I. Gutman, Zagreb indices of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 921-938.
17. T. Došlić, Splices, links and their degree-weighted Wiener polynomials, Graph Theory Notes New York 48 (2005) 47-55.
18. A. Iranmanesh, M. A. Hosseinzadeh and I. Gutman, On multiplicative Zagreb indices of graphs, Iranian J. Math. Chem. 3(2) (2012) 145-154.
19. M. Mogharrab and I. Gutman, Bridge graphs and their topological indices, MATCH Commun. Math. Comput. Chem. 69 (2013) 579-587.
20. R. Sharafdini and I. Gutman, Splice graphs and their topological indices, Kragujevac J. Sci. 35 (2013) 89-98.
