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Abstract

Our main interest in this paper is the study of the Hosoya
index Z (G;ϕ) of weighted graphs (G;ϕ), when G is a hexago-
nal chain with weight function induced by a vertex-degree-based
topological index ϕ. Recall that a hexagonal chain is a special
type of hexagonal systems, natural graph representations of ben-
zenoid hydrocarbons. On the other hand, vertex-degree based
topological indices are (molecular) graph descriptors which play
a significant role in chemical graph theory.

Concretely, if G is a hexagonal chain and ϕ is a vertex-
degree-based topological index, we give a method to compute
Z (G;ϕ) in terms of products of namely four types of 4× 4 ma-
trices associated to ϕ. As a consequence, under certain condi-
tions on ϕ, we show that the ϕ-weighted linear hexagonal chain
attains the minimal value of the Hosoya index, among all ϕ-
weighted hexagonal chains.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction and preliminaries

Let (G;ω) be a weighted graph, where G = (V,E) is a graph with vertex set V = V (G) and
edge set E = E (G) , and ω : E → R+ is a (weight) function. We begin by recalling the concept
of k-matching number and Hosoya index of (G;ω), which was recently introduced in [1]. Given
a non-negative integer k, the number of k-matchings of (G;ω) is denoted by m((G;ω), k) and
it is defined as

m((G;ω), 0) = 1,

and for k ≥ 1,

m ((G;ω) , k) =
∑

U∈{k-matchings of G}

[∏
u∈U

ω (u)

]
.
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Moreover, the Hosoya index of (G;ω), denoted as Z (G;ω), is

Z (G;ω) =
∑
k≥0

m ((G;ω) , k) .

Clearly, if ω(e) = 1 for all e ∈ E(G), then we recover the usual concepts of k-matchings and
Hosoya index of the underlying graph G [2].

Let (G;ω) be a weighted graph and H a subgraph of G. We denote by (H;ω) the weighted
graph

(
H;ω|E(H)

)
, where ω|E(H) is the restriction of ω to E (H). Given an edge uv of G, we

denote by G − uv (respectively G − u) the graph obtained from G by deleting the edge uv
(respectively the vertex u and edges adjacent to it). The following properties of the Hosoya
index of a weighted graph hold [1]:

1. If (G1;ω), . . . , (Gr;ω) are the weighted connected components of the weighted graph
(G;ω), then

Z (G;ω) =

r∏
i=1

Z(Gi;ω) . (1)

2. Let e = uv be an edge of G. Then

Z (G;ω) = Z (G− uv;ω) + ω(e)Z(G− u− v;ω) . (2)

3. If u is an isolated vertex of G then

Z (G;ω) = Z (G− u;ω) . (3)

We generalize the Hosoya vector of a graph introduced in [3] to the case of a weighted graph.
The Hosoya vector of the weighted graph (G;ω) at the edge uv ∈ E (G) is defined as the column
vector

Zuv(G;ω) = (Z(G;ω), Z(G− u;ω), Z(G− v;ω), Z(G− u− v;ω))ᵀ.

Note that
Zuv(G;ω) = PZvu(G;ω),

where P is the permutation matrix

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

In case that the weighted graph (G;ω) is simply an edge st with weight ωst, then the Hosoya
vector of (G;ω) will be denoted by X0 (ω), and it is clearly given by

X0(ω) = (1 + ωst, 1, 1, 1)
ᵀ.

The interest of this study are the weighted graphs (G;ϕ), where G is a hexagonal chain with
weight induced by a vertex-degree-based topological index ϕ. Recall that a hexagonal system is
a finite connected planar graph without cut vertices, in which all interior regions are mutually
congruent regular hexagons. For more details we refer to [4], and for mathematical properties
of degree-based topological indices over hexagonal systems see [5]. A hexagonal chain is a
hexagonal system where any hexagon is adjacent to at most two hexagons, in other words, it
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only has an initial hexagon, linear hexagons, angular hexagons, and a final hexagon. The set
of hexagonal chains with h hexagons will be denoted by Ch.

Let H ∈ Ch be a hexagonal chain with h hexagons H1, H2, . . . ,Hh. Consider the sequence
of vertices u, u1, u2, . . . , uh−1, uh, vh, vh−1 . . . , v2, v1, v in H constructed as follow. Let u and v
be two adjacent vertices of degree 2 in the initial hexagon, both with no neighbors of degree 3.
If one goes along the perimeter of H starting from u and finishing in v, then u1, u2, . . . , uh−1
are the vertices of degree 3 belonging to hexagons H1,. . . , Hh, respectively. The vertices uh

and vh are of degree 2 in Hh, located at distance 2 and 3 from uh−1, respectively. Furthermore,
the vertices vh−1 . . . , v2, v1 are the vertices of degree 3 belonging to hexagons Hh−1,. . . , H1,
respectively.

Note that uivi ∈ E(H) for i = 1, . . . , h. Moreover, for i = 2, . . . , h−1, Hi is a linear hexagon
if d(ui−1, ui) = 2 or an angular hexagon if d(ui−1, ui) ∈ {1, 3}. In Figure 1, a hexagonal chain
in C7 and its sequence of vertices u1, . . . , u7, v7, . . . , v1 are depicted. In this hexagonal chain,
H1 is the initial hexagon, H2 is a linear hexagon, H3, H4, H5 and H6 are angular hexagons,
and H7 is the final hexagon.

Figure 1: Hexagonal chain in C7.
.

On the other hand, a VDB topological index ϕ is defined for a graph G as

ϕ = ϕ(G) =
∑
uv∈E

ϕdG(u),dG(v) ,

where dG(u) denotes the degree of the vertex u ∈ G, and ϕi,j is a bivariate symmetric function
(i.e. ϕi,j = ϕj,i).

Topological indices are numerical values associated with molecular graphs that correlate
chemical structure with physical properties, chemical reactivity, or biological activity, particu-
larly in QSPR/QSAR studies [6, 7]. The best-known VDB topological indices are the following:

1. The First Zagreb index [8], denoted by FZ and defined as ϕij = i+ j,

2. The Second Zagreb index [8], denoted by SZ and defined as ϕij = ij,

3. The Randić index [9], denoted by R and defined as ϕij =
1√
ij
,

4. The Harmonic index [10], denoted by H and defined as ϕij =
2

i+j ,

5. The Geometric-Arithmetic index [11], denoted by GA and defined as ϕij =
2
√
ij

i+j ,
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6. The Sum-Connectivity index [12], denoted by SC and defined as ϕij =
1√
i+j

,

7. The Atom-Bond-Connectivity index [13], denoted by ABC and defined as ϕij =
√

i+j−2
ij ,

8. The Augmented Zagreb index [14], denoted by AZ and defined as ϕij =
(

ij
i+j−2

)3
.

The Hosoya index is also a well-known topological invariant with extensive use in chemical
graph theory as a molecular descriptor in several QSPR studies [15, 16]. The computation of
the Hosoya index of several relevant families of graphs, especially of different classes of benzenoid
systems, has recently appeared in the Mathematical Chemistry literature [15, 17–20]. The main
subject of our work is the Hosoya index of graphs weighted with a VDB topological index, which
can be used as a molecular descriptor resulting from a combination of two important topological
indices: the Hosoya index and a vertex-degree-based topological index.

In this paper we give a method to compute the Hosoya index of the weighted graph (G;ϕ),
when G is a hexagonal chain with weight induced by a vertex-degree-based topological index
ϕ. Namely, we show that the Hosoya index of (G;ϕ) can be computed in terms of a product of
4× 4 matrices associated to the VDB topological index ϕ, evaluated at a fixed vector X0 also
associated to ϕ. As a consequence, we solve the extremal value problem of hexagonal chains
with minimal VDB-Hosoya index.

2 Hosoya index of weighted hexagonal chains

Our main interest in this section is to study the Hosoya index of weighted hexagonal chains.
In order to accomplish this, we show reduction procedures to compute the Hosoya vector of a
hexagonal chain.

Proposition 2.1. Let (G;ω) be a weighted graph depicted in Figure 2. Then

Zuv(G;ω) = Q(ω)Zst(H;ω),

where

Q(ω) =


(1 + ωux)(1 + ωvy) + ωuv ωxs(1 + ωux + ωuv) ωyt(1 + ωux + ωuv) ωytωxs(1 + ωuv)

1 + ωvy ωxs(1 + ωvy) ωyt ωytωxs

1 + ωux ωxs ωyt(1 + ωux) ωytωxs

1 ωxs ωyt ωytωxs

.

Proof. Deleting the independent edges xs and yt from G (see Figure 2) and using relations (1),
(2) and (3) we deduce

Z(G;ω) = Z(G− yt− xs;ω) + ωxsZ(G− yt− x− s;ω)

+ ωytZ(G− y − t− xs;ω) + ωytωxsZ(G− y − t− x− s;ω)

= [(1 + ωux)(1 + ωvy) + ωuv]Z(H;ω) + ωxs(1 + ωux + ωuv)Z(H − s;ω)

+ ωyt(1 + ωux + ωuv)Z(H − t;ω) + ωytωxs(1 + ωuv)Z(H − s− t;ω)

=


1 + ωux + ωuv + ωvy + ωuxωvy

ωxs(1 + ωux + ωuv)
ωyt(1 + ωux + ωuv)
ωytωxs(1 + ωuv)


ᵀ

· Zst(H;ω),
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Z(G− u;ω) = Z(G− u− yt− xs;ω) + ωxsZ(G− u− yt− x− s;ω)

+ ωytZ(G− u− y − t− xs;ω) + ωytωxsZ(G− u− y − t− x− s;ω)

= (1 + ωvy)Z(H;ω) + ωxs(1 + ωvy)Z(H − s;ω)

+ ωytZ(H − t, ω) + ωytωxsZ(H − s− t;ω)

= (1 + ωvy, ωxs(1 + ωvy), ωyt, ωytωxs) · Zst(H;ω),

Z(G− v;ω) = Z(G− v − yt− xs;ω) + ωxsZ(G− v − yt− x− s;ω)

+ ωytZ(G− v − y − t− xs;ω) + ωytωxsZ(G− v − y − t− x− s;ω)

= (1 + ωux)Z(H;ω) + ωxsZ(H − s;ω)

+ ωyt(1 + ωux)Z(H − t, ω) + ωytωxsZ(H − s− t;ω)

= (1 + ωux, ωxs, ωyt(1 + ωux), ωytωxs) · Zst(H;ω),

Z(G− u− v;ω) = Z(G− u− v − yt− xs;ω) + ωxsZ(G− u− v − yt− x− s;ω)

+ ωytZ(G− u− v − y − t− xs;ω)

+ ωytωxsZ(G− u− v − y − t− x− s;ω)

= Z(H;ω) + ωxsZ(H − s;ω) + ωytZ(H − t;ω)

+ ωytωxsZ(H − s− t;ω)

= (1, ωxs, ωyt, ωytωxs) · Zst(H;ω).

�

Figure 2: Graph used in Propositions 2.1 and 2.2.

Proposition 2.2. Let (G;ω) be the weighted graph depicted in Figure 2. Then

Zvy(G;ω) = S(ω)Zst(H;ω),

where

S(ω) =


(1 + ωvy)(1 + ωux) + ωuv ωxs(1 + ωvy + ωuv) ωyt(1 + ωux + ωuv) ωytωxs(1 + ωuv)

1 + ωux ωxs ωyt(1 + ωux) ωytωxs

1 + ωux + ωuv ωxs + ωxsωuv 0 0
1 + ωux ωxs 0 0

.
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Proof. Deleting the independent edges uv, xs and yt from G (see Figure 2) and using relations
(1), (2) and (3) we deduce

Z(G) = Z(G− yt− xs− uv;ω) + ωuvZ(G− yt− xs− u− v;ω)

+ ωxsZ(G− yt− uv − x− s;ω) + ωxsωuvZ(G− yt− x− s− u− v;ω)

+ ωytZ(G− xs− uv − y − t;ω) + ωytωuvZ(G− xs− y − t− u− v;ω)

+ ωytωxsZ(G− uv − y − t− x− s;ω)

+ ωytωxsωuvZ(G− y − t− x− s− u− v;ω)

= [(1 + ωvy)(1 + ωux) + ωuv]Z(H;ω) + [ωxs(1 + ωvy) + ωxsωuv]Z(H − s;ω)

+ [ωyt(1 + ωux) + ωytωuv]Z(H − t;ω)

+ [ωytωxs + ωytωxsωuv]Z(H − s− t;ω),

Z(G− v;ω) = Z(G− v − yt− xs;ω) + ωxsZ(G− v − yt− x− s;ω)

+ ωytZ(G− v − xs− y − t;ω) + ωytωxsZ(G− v − y − t− x− s;ω)

= (1 + ωux)Z(H;ω) + ωxsZ(H − s;ω) + ωyt(1 + ωux)Z(H − t;ω)

+ ωytωxsZ(H − s− t;ω),

Z(G− y;ω) = Z(G− y − xs− uv;ω) + ωuvZ(G− y − xs− u− v;ω)

+ ωxsZ(G− y − uv − x− s;ω) + ωxsωuvZ(G− y − x− s− u− v;ω)

= [(1 + ωux) + ωuv]Z(H;ω) + [ωxs + ωxsωuv]Z(H − s;ω),

Z(G− v − y;ω) = Z(G− v − y − xs;ω) + ωxsZ(G− v − y − x− s;ω)

= (1 + ωux)Z(H;ω) + ωxsZ(H − s;ω).

�

From now on we will simply write Q = Q(ω), S = S(ω) and X0 = X0(ω) if the weight
of each edge is clear from the context. Propositions 2.1 and 2.2 can be used to compute the
Hosoya index of any weighted hexagonal chain as we illustrate in our next example.

Example 2.3. Let us compute the Hosoya index of the weighted hexagonal chain (H;ω) shown
in Figure 3. For each j = 2, . . . , 6, we denote by (H(j);ω) the weighted hexagonal subchain
of (H;ω) which initiates in edge uj−1vj−1 and ends in edge u7v7. A repeated application of
Propositions 2.1 and 2.2 gives

Zuv(H;ω) = QH1Zu1v1

(
H(2);ω

)
= QH1QH2Zu2v2

(
H(3);ω

)
= QH1QH2SH3Zu3v3

(
H(4);ω

)
= QH1QH2SH3PZv3u3

(
H(4);ω

)
= QH1QH2SH3PSH4Zv4u4

(
H(5);ω

)
= QH1QH2SH3PSH4SH5Zv5u5

(
H(6);ω

)
= QH1QH2SH3PSH4SH5PZu5v5

(
H(6);ω

)
= QH1QH2SH3PSH4SH5PSH6Zu6v6

(
H(7);ω

)
= QH1

QH2
SH3

PSH4
SH5

PSH6
QH7

X0,



Iranian Journal of Mathematical Chemistry 16 (4) (2025) 337− 353 343

Figure 3: Weighted graph used in Example 2.3.
.

where

QH1 =


29 45 45 125
5 25 5 25
5 5 25 25
1 5 5 25

 , QH2 =


42 60 60 175
6 30 5 25
6 5 30 25
1 5 5 25

 , QH7 =


42 48 48 112
6 24 4 16
6 4 24 16
1 4 4 16

 ,

SH3 = SH4 = SH5 = SH6 =


40 60 60 180
5 5 30 30
10 30 0 0
5 5 0 0

 , X0 =


5
1
1
1

 .

Hence,

Zu1v1(H;ω) = (60088205420000, 13540312100000, 13729597100000, 4955396980000)ᵀ.

In particular, Z(H;ω) = 60088205420000.

3 VDB-Hosoya index of hexagonal chains
We are particularly interested in weighted graphs with a weight function induced by a vertex-
degree-based (VDB, for short) topological index. Recall that a VDB topological index ϕ is
defined for a graph G as

ϕ = ϕ(G) =
∑
uv∈E

ϕdG(u),dG(v) ,

where dG(u) denotes the degree of the vertex u ∈ G, and ϕi,j is a bivariate symmetric function
(i.e. ϕi,j = ϕj,i). Then we consider the weighted graph (G;ϕ) with weight function ϕ : E → R
defined as

ϕ(uv) = ϕdG(u),dG(v) ,

for all uv ∈ E(G).

Example 3.1. The weighted hexagonal chain in Figure 3 is an example of a VDB-weighted
graph when the VDB topological index ϕ is the First Zagreb index.
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Our main result in this section is to show that if H is a hexagonal chain, then the Hosoya vector
of the VDB-weighted graph (H;ϕ) is the evaluation at

X0 = (1 + ϕ2,2, 1, 1, 1)
ᵀ,

of a product of the following 4× 4 matrices:

Q1 =


(1 + ϕ2,2)

2 + ϕ2,2 ϕ2,3(1 + 2ϕ2,2) ϕ2,3(1 + 2ϕ2,2) ϕ2
2,3(1 + ϕ2,2)

1 + ϕ2,2 ϕ2,3(1 + ϕ2,2) ϕ2,3 ϕ2
2,3

1 + ϕ2,2 ϕ2,3 ϕ2,3(1 + ϕ2,2) ϕ2
2,3

1 ϕ2,3 ϕ2,3 ϕ2
2,3

 ,

Q2 =


(1 + ϕ2,3)

2 + ϕ3,3 ϕ2,3(1 + ϕ2,3 + ϕ3,3) ϕ2,3(1 + ϕ2,3 + ϕ3,3) ϕ2
2,3(1 + ϕ3,3)

1 + ϕ2,3 ϕ2,3(1 + ϕ2,3) ϕ2,3 ϕ2
2,3

1 + ϕ2,3 ϕ2,3 ϕ2,3(1 + ϕ2,3) ϕ2
2,3

1 ϕ2,3 ϕ2,3 ϕ2
2,3

,

Q3 =


(1 + ϕ2,3)

2 + ϕ3,3 ϕ2,2(1 + ϕ2,3 + ϕ3,3) ϕ2,2(1 + ϕ2,3 + ϕ3,3) ϕ2
2,2(1 + ϕ3,3)

1 + ϕ2,3 ϕ2,2(1 + ϕ2,3) ϕ2,2 ϕ2
2,2

1 + ϕ2,3 ϕ2,2 ϕ2,2(1 + ϕ2,3) ϕ2
2,2

1 ϕ2,2 ϕ2,2 ϕ2
2,2

,

and

S =


(1 + ϕ3,3)(1 + ϕ2,2) + ϕ2,3 ϕ2,3(1 + ϕ3,3 + ϕ2,3) ϕ3,3(1 + ϕ2,2 + ϕ2,3) ϕ3,3ϕ2,3(1 + ϕ2,3)

1 + ϕ2,2 ϕ2,3 ϕ3,3(1 + ϕ2,2) ϕ3,3ϕ2,3

1 + ϕ2,2 + ϕ2,3 ϕ2,3 + ϕ2
2,3 0 0

1 + ϕ2,2 ϕ2,3 0 0

.

Theorem 3.2. Let H ∈ Cr and u, u1, . . . , ur, vr, . . . , v1, v the sequence of vertices of H as
described in Section 1. Then,

Zuv(H;ϕ) = Q1M2 · · ·Mr−1Q3X0,

where

Mj =

 PSP, if d(uj−1, uj) = 1,
Q2, if d(uj−1, uj) = 2,
S, if d(uj−1, uj) = 3,

for j = 2, . . . , r − 1.

Proof. Let 1 ≤ j ≤ r and (H(j);ϕ) be the weighted subchain of (H;ϕ) starting in the hexagon
Hj and finishing in the hexagon Hr. Note that (H(1);ϕ) = (H;ϕ). From Proposition 2.1

Zuv(H;ϕ) = Q1Zu1v1(H
(2);ϕ).

If 2 ≤ j ≤ r − 1, from Propositions 2.1 and 2.2, we have to consider three cases:

1. If d(uj−1, uj) = 1,

Zuj−1vj−1
(H(j);ϕ) = PZvj−1uj−1

(H(j);ϕ) = PSZvj ,uj
(H(j+1);ϕ) = PSPZujvj (H

(j+1);ϕ).

2. If d(uj−1, uj) = 2,
Zuj−1vj−1

(H(j);ϕ) = Q2Zujvj (H
(j+1);ϕ).
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3. If d(uj−1, uj) = 3,
Zuj−1vj−1(H

(j);ϕ) = SZujvj (H
(j+1);ϕ).

Finally, from Proposition 2.1 we have

Zur−1vr−1
(H(r);ϕ) = Q3X0.

Hence,
Zuv(H;ϕ) = Q1M2 · · ·Mr−1Q3X0,

where

Mj =

 PSP, if d(uj−1, uj) = 1,
Q2, if d(uj−1, uj) = 2,
S, if d(uj−1, uj) = 3,

for j = 2, . . . , r − 1. �

Example 3.3. Consider the hexagonal chain shown in Figure 1 weighted by a VDB topological
index ϕ. Then, by Theorem 3.2,

Zuv(H;ϕ) = Q1Q2SPSPPSPSQ3X0 = Q1Q2SPSSPSQ3X0,

since P 2 is the identity matrix.

Example 3.4. Consider the zig-zag chain with h hexagons Zh weighted by a VDB topological
index ϕ (see Figure 4 if h is even and Figure 5 if h is odd). Then, by Theorem 3.2,

Zuv(Zh;ϕ) =

 Q1(PSPS)
h−2
2 Q3X0, if h is even,

Q1(PSPS)
h−3
2 PSPQ3X0, if h is odd.

Figure 4: Zig-zag hexagonal chain weighted by a VDB topological index ϕ for even h.
.

Example 3.5. Consider the linear hexagonal chain with h hexagons Lh weighted by a VDB
topological index ϕ (see Figure 6). Then, by Theorem 3.2,

Zuv(Lh;ϕ) = Q1Q
h−2
2 Q3X0.
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Figure 5: Zig-zag hexagonal chain weighted by a VDB topological index ϕ for odd h.
.

Figure 6: Linear hexagonal chain weighted by a VDB topological index ϕ.
.

4 Minimal value of VDB-Hosoya index among hexagonal
chains

It is well known that among hexagonal chains, the linear chain has the minimal Hosoya index
[15]. In this section, we show that under certain conditions on the VDB topological index, it
remains true for the VDB-Hosoya index. If A is an m× n matrix with all entries non-negative
real numbers, we write A ≥ 0.

Proposition 4.1. Let ϕ be a VDB topological index such that xk = (S − Q2)Q
k−2
2 Q3X0 ≥ 0

for all k ≥ 2. Consider the hexagonal chains Hk,1, Hk,2 and Hk,3 depicted in Figure 7. Then

Z(Hk,1;ϕ) ≤ Z(Hk,2;ϕ),

Z(Hk,1;ϕ) ≤ Z(Hk,3;ϕ),

for all k ≥ 2.

Proof. By virtue of Theorem 3.2,

Zuv(Hk,1;ϕ) = Q1MQk−1
2 Q3X0,

Zuv(Hk,2;ϕ) = Q1MSQk−2
2 Q3X0,

Zuv(Hk,3;ϕ) = Q1MPSPQk−2
2 Q3X0,
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where M is a product of matrices associated to the VDB topological index ϕ. Hence,

Z(Hk,1;ϕ) = eᵀ1Q1MQk−1
2 Q3X0 = yᵀQk−1

2 Q3X0,

Z(Hk,2;ϕ) = eᵀ1Q1MSQk−2
2 Q3X0 = yᵀSQk−2

2 Q3X0,

Z(Hk,3;ϕ) = eᵀ1Q1MPSPQk−2
2 Q3X0 = yᵀPSPQk−2

2 Q3X0,

where yᵀ = eᵀ1Q1M with eᵀ1 = (1, 0, 0, 0)ᵀ. Note that

Z(Hk,2;ϕ)− Z(Hk,1;ϕ) = yᵀ(S −Q2)Q
k−2
2 Q3X0 = yᵀxk,

Z(Hk,3;ϕ)− Z(Hk,1;ϕ) = yᵀ(PSP −Q2)Q
k−2
2 Q3X0 = yᵀ(PSP − PQ2P )Qk−2

2 Q3X0

= yᵀP (S −Q2)PQk−2
2 Q3X0 = yᵀP (S −Q2)Q

k−2
2 Q3PX0

= yᵀP (S −Q2)Q
k−2
2 Q3X0 = yᵀPxk,

since PQ2 = Q2P , PQ3 = Q3P and PX0 = X0. Consequently, since xk ≥ 0 for all k ≥ 2 and
yᵀ ≥ 0, we conclude that Z(Hk,2;ϕ) ≥ Z(Hk,1;ϕ) and Z(Hk,3;ϕ) ≥ Z(Hk,1;ϕ). �

Figure 7: Graphs used in Proposition 4.1.
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Example 4.2. By Proposition 4.1 we can see that the sequence of hexagonal chains in Figure 8
satisfies

Z(C1;ϕ) ≥ Z(C2;ϕ) ≥ Z(C3;ϕ) ≥ Z(C4;ϕ) ≥ Z(C5;ϕ),

when (S −Q2)Q
k−2
2 Q3X0 ≥ 0 for all k ≥ 2.

Figure 8: Z(C1;ϕ) ≥ Z(C2;ϕ) ≥ Z(C3;ϕ) ≥ Z(C4;ϕ) ≥ Z(C5;ϕ).

As a consequence of Proposition 4.1, we have a condition that guarantees the minimality of
the linear chain with respect to the VDB-Hosoya index, among hexagonal chains.

Theorem 4.3. Let ϕ be a VDB topological index such that xk = (S −Q2)Q
k−2
2 Q3X0 ≥ 0 for

all k ≥ 2. If h ≥ 3, then
Z(Lh;ϕ) ≤ Z(H;ϕ),

for all H ∈ Ch.

Proof. The proof is by induction on number of angular hexagons. If H = Lh, then the number
of angular hexagon is zero and we are done. Assume the result is valid for any hexagonal chain
in Ch with r ≥ 0 angular hexagons and let H be a hexagonal chain with r+1 angular hexagons.
Then, H is of the form Hk,2 or Hk,3 as depicted in Figure 7. Applying Proposition 4.1 we
obtain a hexagonal chain H ′ ∈ Ch with r angular hexagons and by the induction hypothesis

Z(H;ϕ) ≥ Z(H ′;ϕ) ≥ Z(Lh;ϕ).

�

Corollary 4.4. Let h ≥ 3 and ϕ ∈ {R,H,GA,SC,AZ}. Then

Z(Lh;ϕ) ≤ Z(H;ϕ),

for all H ∈ Ch.

Proof. Using Theorem 4.3, we prove that for each of the indices R,H,GA,SC,AZ that xk ≥ 0
for all k ≥ 2. Let A = (S −Q2)Q2

1. For the Randić index R

AQ2 =


0.2248 0.0722 0.0701 0.0228
0.2248 0.0676 0.0748 0.0228
1.2249 0.3981 0.3775 0.1241
1.2249 0.3935 0.3821 0.1241

 , x3 =


0.5456
0.5456
2.9733
2.9733

 , x2 =


0.1579
0.1579
0.8605
0.8605

 .
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2. For the Geometric-Arithmetic index GA

AQ2 =


3.454 2.2577 2.3132 1.5637
1.9467 0.3822 2.2072 0.8879
12.1669 8.8918 6.2193 4.987
12.1669 8.007 7.1041 4.987

 , x3 =


13.2019
7.4611
44.9513
44.9513

 , x2 =


1.6485
0.9366
5.2198
5.2198

 .

3. For the Sum-Connectivity index SC

AQ2 =


0.2512 0.0874 0.086 0.0303
0.2143 0.0665 0.0811 0.0258
1.2564 0.4457 0.4118 0.1484
1.2564 0.4377 0.4198 0.1484

 , x3 =


0.6084
0.5187
3.0289
3.0289

 , x2 =


0.1644
0.1398
0.8009
0.8009

 .

4. For the Harmonic index H

A =


0.134 0.0393 0.0297 0.0089
0.1187 0.0091 0.0507 0.0075
0.4267 0.1483 0.0331 0.0171
0.4267 0.1227 0.0587 0.0171

 , x2 =


0.301
0.2643
0.8933
0.8933

 .

5. For the Augmented Zagreb index AZ

AQ2Q2 =


60950346.835 186649648.1159 194649136.1159 747590606.5364
9454391.4735 9369109.3975 50923029.3975 112557185.0549
9447251.4514 45796083.4866 10144499.4866 113126370.8926
9447251.4514 29018867.4866 26921715.4866 113126370.8926

 ,

x4 =


1677442512.2835
257938847.1115
254092216.9287
254092216.9287

 , x3 =


10358277.2649
1563926.2581
1543909.5176
1543909.5176

 , x2 =


62194.6582
9280.1406
8110.125
8110.125

 .

Hence, in virtue of Theorem 4.3, for all ϕ ∈ {R,H,GA,SC,AZ},

Z(Lh;ϕ) ≤ Z(H;ϕ),

for all H ∈ Ch. In other words, the linear chain is the hexagonal chain with minimal value of
the VDB-Hosoya index. �

The VDB topological indices ϕ ∈ {FZ,SZ,ABC} do not satisfy the condition in Theo-
rem 4.3. However, it is possible to obtain a similar result to Theorem 4.3 over the subfamily
C∗h of hexagonal chains with no adjacent angular hexagons.

Proposition 4.5. Let ϕ be a VDB topological index such that x′k = Q2(S−Q2)Q
k−2
2 Q3X0 ≥ 0

for all k ≥ 2. Assume that the hexagonal chains Hk,1, Hk,2 and Hk,3 in Figure 7 belong to C∗h.
Then

Z(Hk,1;ϕ) ≤ Z(Hk,2;ϕ),

Z(Hk,1;ϕ) ≤ Z(Hk,3;ϕ),

for all k ≥ 2.
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Proof. The proof is similar to the proof of Proposition 4.1. By Theorem 3.2,

Z(Hk,1;ϕ) = eᵀ1Q1MQ2Q
k−1
2 Q3X0 = yᵀQ2Q

k−1
2 Q3X0,

Z(Hk,2;ϕ) = eᵀ1Q1MQ2SQ
k−2
2 Q3X0 = yᵀQ2SQ

k−2
2 Q3X0,

Z(Hk,3;ϕ) = eᵀ1Q1MQ2PSPQk−2
2 Q3X0 = yᵀQ2PSPQk−2

2 Q3X0,

where M is a product of matrices associated to the VDB topological index ϕ and yᵀ = eᵀ1Q1M
with eᵀ1 = (1, 0, 0, 0)ᵀ. Then

Z(Hk,2;ϕ)− Z(Hk,1;ϕ) = yᵀQ2(S −Q2)Q
k−2
2 Q3X0 = yᵀx′k ≥ 0,

Z(Hk,3;ϕ)− Z(Hk,1;ϕ) = yᵀQ2(PSP −Q2)Q
k−2
2 Q3X0

= yᵀQ2(PSP − PQ2P )Qk−2
2 Q3X0

= yᵀPQ2(S −Q2)Q
k−2
2 Q3X0 = yᵀPx′k ≥ 0.

We conclude that Z(Hk,2;ϕ) ≥ Z(Hk,1;ϕ) and Z(Hk,3;ϕ) ≥ Z(Hk,1;ϕ). �

Theorem 4.6. Let ϕ be a VDB topological index such that x′k = Q2(S − Q2)Q
k−2
2 Q3X0 ≥ 0

for all k ≥ 2. If h ≥ 4, then
Z(Lh;ϕ) ≤ Z(H;ϕ),

for all H ∈ C∗h.
Proof. The proof is similar to the proof of Theorem 4.3 using Proposition 4.5 instead of Propo-
sition 4.1. �

Corollary 4.7. Let ϕ ∈ {FZ,SZ,ABC} and h ≥ 4. Then

Z(Lh;ϕ) ≤ Z(H;ϕ),

for all H ∈ C∗h.
Proof. Using Theorem 4.6, we prove that for each of the indices FZ,SZ,ABC that x′k ≥ 0 for
all k ≥ 2. Let A = Q2(S −Q2)Q2Q2

1. For the First Zagreb index FZ

AQ2Q2 =


3810385661 8615526480 8156542105 21834212650
243292398 314988515 744676015 1388121450
1077622398 2674466640 2078763515 6180902700
620276958 1398299940 1339706190 3559218575

 ,

x′5 =


46443479269
2952591342
13146473842
7569689582

 , x′4 =


621036222
39459246
175822371
101247991

 , x′3 =


8138436
511098
2309848
1331533

 , x′2 =


90193
4974
26224
15254

 .

2. For the Second Zagreb index SZ

AQ2Q2 =


30488306320 81288914496 77469467712 250374385728
1407771400 1576663584 5753868576 11560822560
5751751720 17512289952 12438170016 47234217888
3097097080 8257581024 7869589728 25433809632

 ,

x′5 =


369557957840
17064021800
69718717640
37540847960

 , x′4 =


3589757624
165753980
677223404
364658756

 , x′3 =


34454132
1590890
6499922
3499958

 , x′2 =


291830
13475
55055
29645

 .
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3. For the Atom-Bond-Connectivity index ABC

A =


2.1774 1.125 0.5902 0.3579
0.7184 0.313 0.1743 0.084
2.8894 1.5378 1.0694 0.6188
2.158 1.1013 0.8585 0.4676

 , x′3 =


5.7901
1.7977
8.1585
6.1113

 , x′2 =


0.7537
0.1839
1.2732
0.9613

 .

Hence, in virtue of Theorem 4.6, if ϕ ∈ {FZ,SZ,ABC}, then

Z(Lh, ϕ) ≤ Z(H,ϕ),

for all H ∈ C∗h, h ≥ 4. In other words, the linear chain attains the minimal VDB-Hosoya index
over the family C∗h of hexagonal chains with no adjacent angular hexagons. �

5 Concluding remarks

In this paper, we compute the Hosoya index of the weighted hexagonal chain (H;ϕ), where
the weight is induced by a vertex-degree-based topological index ϕ. In our main result (see
Theorem 3.2, we give an expression to compute the Hosoya index of (H;ϕ) in terms of a
product of 4× 4 matrices associated to the VDB topological index ϕ.
We also give conditions on ϕ to assure that the VDB weighted linear hexagonal chain is the
minimal weighted hexagonal chain with h hexagons with respect to the Hosoya index. As a
consequence, we proved that the mentioned result is true for the Randić, Harmonic, Geometric-
Arithmetic, Sum-Connectivity and Augmented Zagreb indices.
Although the First Zagreb, Second Zagreb and Bond-Connectivity do not satisfy the mentioned
conditions, we obtained a similar result over the subfamily of hexagonal chains with no adjacent
angular hexagons.
As a future work we propose to solve the following problem.

Problem 5.1. Prove that the VDB weighted linear hexagonal chain is the minimal weighted
hexagonal chain with h hexagons with respect to the Hosoya index for the First Zagreb, Second
Zagreb and Atom-Bond-Connectivity indices.

It is known that the zig-zag hexagonal chain is maximal with respect to the Hosoya index
over the set of hexagonal chains with h hexagons [15]. This fact motivates us to pose another
problem.

Problem 5.2. Find the maximal VDB weighted hexagonal chain with respect to the Hosoya
index for known VDB topological indices.
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