
Iranian Journal of
Mathematical Chemistry

IJMC

DOI: 10.22052/IJMC.2024.255424.1899
Vol. 16, No. 2, 2025, pp. 155-170

Research Paper

A Note on the Additively Weighted Mostar Index of
Graphs

Liju Alex1 , Gopalapillai Indulal2? and Joyamol T Baby1

1Bishop Chulaparambil Memorial College, Kottayam-686001, India
2Department of Mathematics, St.Aloysius College, Edathua, Alappuzha -689573, India

Keywords:

Mostar Index,

Additively weighted Mostar
index,

Zagreb index,
Unicyclic Graphs

AMS Subject Classification

(2020):

92E10; 05C92; 05C35

Article History:

Received: 8 September 2024

Accepted: 12 October 2024

Abstract

In this article, we discuss the additively weighted Mostar
index, an innovative topological measure that extends the
traditional Mostar index by incorporating edge weights com-
puted as the sum of the degrees of their end point vertices.
We focus on its application within the set Un comprising all
unicyclic graphs of order n. Our study rigorously establishes
the first two sharp lower and upper bounds for this index across
graphs in Un. Additionally, we analyze the additively weighted
Mostar index of Cartesian product graphs and investigate
its properties across various graph classes. Furthermore, we
demonstrate the practical utility of this index by comparing
its effectiveness against eight other distance-based topological
indices in predicting chemical properties of octane isomers.
Remarkably, we find that the additively weighted Mostar
index outperforms or matches the predictive capabilities of
other indices in linear models with these chemical properties,
highlighting its potential in quantitative structure-property
relationships. This research significantly contributes to both
graph theory and chemical informatics by showcasing the
unique advantages of the additively weighted Mostar index in
structural analysis and predictive modeling.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction
Let G be a simple connected graph with vertex set V and edge set E. For a vertex v ∈ V ,
d(v) denotes the degree of the vertex v. A vertex v is a pendant vertex if d(v) = 1 and the
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corresponding edge e incident on v is a pendant edge. Let u, v be two vertices in V , then the
distance between u and v is the length of the shortest u − v path in G, denoted by d(u, v).
For any edge e = uv, Nu(e|G) denotes the set of all vertices in G which are closer to u than v
and |Nu(e|G)| = nu(e|G). A graph is distance balanced if nu(e|G) = nv(e|G) for all e ∈ E [1].
Throughout this paper, we consider only simple, finite, connected, undirected graphs.

Molecular graphs translate molecules as graphical structures where atoms are represented
as vertices and bonds between atoms as edges. In chemical graph theory, studying molecular
graphs is crucial as it provides deeper insights into the structure, composition, and physico-
chemical properties of molecules. An essential tool in this analysis is the use of topological
indices, numerical values associated with graphs that succinctly describe their structural fea-
tures and remain unchanged regardless of the specific arrangement of vertices and edges. These
indices play a vital role in predicting and understanding various chemical properties solely
based on the molecular structure represented by the graph. They are instrumental in estab-
lishing quantitative relationships between molecular structure and properties, benefiting fields
such as pharmaceuticals, materials science, and environmental chemistry.

The Wiener index, the earliest topological index, was introduced in 1947 by H. Wiener. The
Wiener index W (G) of a graph [2] G = (V,E) is defined as

W (G) =
∑

{u,v}∈V

d(u, v).

In the case of acyclic connected graphs this definition can be restated as [3]

W (G) =
∑

e=uv∈E
nu(e|G)nv(e|G).

This definition was extended to non-tree graphs, which led to the introduction of the Szeged
index (Sz) by I. Gutman [4]. The Szeged index was found to be very useful in studying the
physico-chemical properties of chemical compounds and drugs [5, 6]. For detailed literature
on the Szeged type indices, see [7–11]. In 2018, T. Došlić et al. proposed the Mostar index,
Mo(G), of a graph G = (V,E) defined as

Mo(G) =
∑

e=uv∈E
|nu(e|G)− nv(e|G)|.

The Mostar index measures how far a graph deviates from being distance-balanced [12]. For a
detailed literature on the Mostar index, see [12–19]. Many more applications and modifications
of the Mostar index can be seen in [20–22]. The additively weighted Mostar index [21, 22]
(MoA(G)) is one among the modified versions. Let G = (V,E) be a graph, the additively
weighted Mostar index is defined as

MoA(G) =
∑

e=uv∈E
(d(u) + d(v))|nu(e|G)− nv(e|G)|.

Recently defined, the additively weighted Mostar index has seen limited exploration in litera-
ture. In [12], Akbar Ali and Tomislav Došlić computed extremal values of this index for trees.
Additionally, in [23], two authors of this paper established upper bounds for the additively
weighted Mostar index for distinct classes of cacti.

In this study, we determine extremal values of the additively weighted Mostar index for
unicyclic graphs of specified order. Furthermore, we investigate the relationship between this
index and the chemical properties of octane isomers and benzenoid hydrocarbons. This paper
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is structured as follows: Sections 1 and 2 focus on deriving the first two lower bounds and
the first two upper bounds of MoA(G) for unicyclic graphs, and exploring its correlation with
various degree-based topological indices. In Section 3, we examine the correlation between the
additively weighted Mostar index and chemical properties of octane isomers.

2 Main results
In this section, we derive the initial two lower bounds and upper bounds forMoA(G) specifically
for unicyclic graphs. Additionally, we discuss various properties associated with the additively
weighted Mostar index. For every edge e = uv in G, let MoA(e|G) = (d(u) + d(v))|nu(e|G) −
nv(e|G)| denotes the contribution by the edge e to the additively weighted Mostar index of G.
We have the following lemmas, the proofs of which follow from the definition of MoA(e|G).

Lemma 2.1. Let G = (V,E) be a connected graph and e = uv ∈ E. Then MoA(e|G) ≥ 0 and
the equality holds if and only if nu(e|G) = nv(e|G).

Lemma 2.2. Let G = (V,E) be a connected graph of order n ≥ 3 and e = uv ∈ E. If e is a
pendant edge then MoA(e|G) > 0.

Lemma 2.3. Let G be a connected graph. Then MoA(G) ≥ 0 and the equality holds if and
only if G is distance balanced.

The following discussions on lower bounds are based on Lemmas 2.1 to 2.3.

Theorem 2.4. Let G ∈ Un. Then MoA(G) ≥ 0 and the equality holds if and only if G ∼= Cn.

Proof. According to Lemma 2.3, for any graph G ∈ Un, it holds that MoA(G) ≥ 0. Consider a
graph G ∈ Un where MoA(G) = 0. This implies that G does not contain any bridge. If G did
contain a bridge e, then e would belong to an induced subtree T within G, and consequently, T
would include a pendant edge e′. However, by Lemma 2.2, this would lead to MoA(e′|G) > 0,
which contradicts the assumption that MoA(G) = 0. Therefore, every edge of G must be part
of a cycle, indicating that G is isomorphic to Cn, a cycle of length n.
Conversely, if G = Cn, then it is straightforward that MoA(G) = 0 since Cn does not contain
any bridges. �

Next, we establish the second smallest lower bound for the additively weighted Mostar index
concerning unicyclic graphs. Consider the unicyclic graph denoted as Cr,p, which is constructed
by connecting a vertex of a cycle Cr with a pendant vertex of a path of length p.
Let G0

1 represent a unicyclic graph of order n (where n is even), comprising a cycle Cn−2 along
with two pendant edges attached at diametrically opposite vertices of the cycle Cn−2.

Proposition 2.5. If n ≥ 6, then

(a.) MoA(Cn−1,1) =

{
8n− 10, if n is odd,
8n− 14, if n is even,

(b.) MoA(G0
1) = 8n− 16, where n is even.

Proof. (a.) For the pendant edge e, its contribution to the additively weighted Mostar index is
given by MoA(e | Cn−1,1) = 4n− 8.

If n is odd, then in the cycle Cn−1 with n− 1 edges: MoA(e | Cn−1,1) = 4 for n− 3 edges,
MoA(e | Cn−1,1) = 5 for the remaining two edges that connect Cn−1 to the pendant edge.
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Therefore, the additively weighted Mostar index MoA(Cn−1,1) is 8n− 10.
If n is even, then: MoA(e | Cn−1,1) = 4 for n − 4 edges of Cn−1 and MoA(e | Cn−1,1) = 5

for the two additional edges connecting Cn−1 to the pendant vertex. The contribution from the
remaining one edge is zero.

Thus, the additively weighted Mostar index MoA(Cn−1,1) in this case is 8n− 14.
(b.) In G0

1, all edges except the pendant edges contribute zero to the additively weighted Mostar
index. Hence, MoA(G0

1) = 4(n− 2) + 4(n− 2) = 8n− 16. �

Let Un|{H} denotes the collection of all unicyclic graphs of order n other than the graph H.

Corollary 2.6. If G is a unicyclic graph in Un|{Cn} with n ≥ 6 which attains the minimum
value of additively weighted Mostar index, then MoA(G) ≤ 8n− 10 if n is odd and MoA(G) ≤
8n− 16 if n is even.

Theorem 2.7. Let n ≥ 6. Then Cn−1,1, G
0
1 are the graphs in Un|{Cn} with minimum value of

additively weighted Mostar index for odd and even orders respectively.

Proof. Let G be a graph which attains minimum value of additively weighted Mostar index in
Un|{Cn}, n ≥ 6. Then by Corollary 2.6,MoA(G) ≤ 8n−10 if n is odd andMoA(G) ≤ 8n−16 if
n is even. It is evident that a pendant edge e = uv ∈ G contributes at least (d(u) +d(v))(n−2)
to MoA(G). Based on this observation, we propose the following claims about G:
Claim I: G has one or two pendant edges.

On the contrary assume that G has three or more pendant edges.
1. If at least one of these pendant edges is incident on a cycle, then MoA(G) > 10n − 20.

This contradicts the bound MoA(G) ≤ 8n− 10 for n ≥ 6.
2. If none of the pendant edges are incident on a cycle, then there exist at most three

edges fi, i = 1, 2, 3 such that MoA(fi | G) ≥ 4n − 16. Thus, MoA(G) > 13n − 34. However,
13n − 34 > 8n − 10 when n ≥ 6, which is impossible given the upper bound provided by the
corollary.
Therefore, G cannot have three or more pendant edges. Hence Claim I is established.

Consider the case where G has exactly two pendant edges e1 and e2. Let’s analyse
the following possibilities.

1. One pendant edge is incident on a bridge:
If one of e1 or e2 is incident on a bridge, there exists another edge f such that MoA(f |
G) ≥ 4n− 16. Additionally, there are two more edges contributing at least 4 each. Therefore,
MoA(G) ≥ 4(n− 2) + 3(n− 2) + 4(n− 4) + 8 = 11n− 22. However, 11n− 22 > 8n− 10 when
n ≥ 6, which is impossible.

2. Both pendant edges incident on the same bridge:
If both e1 and e2 are incident on the same bridge f , MoA(f | G) ≥ 5(n− 6). Additionally, two
more edges contribute at least 4 each. Thus, MoA(G) > 8n − 16 + 5n − 30 + 8 = 13n − 38.
Similarly, 13n− 38 > 8n− 10 when n ≥ 6, which is impossible.

3. Pendant edges incident on different bridges:
If e1 and e2 are incident on different bridges f1 and f2, respectively, thenMoA(fi | G) ≥ 4n−16
for i = 1, 2. Therefore, MoA(G) > 14n− 44. Again, 14n− 44 > 8n− 10 when n ≥ 6, which is
impossible.

4. Pendant edges incident on the cycle at the same vertex:
If e1 and e2 are incident on the cycle at the same vertex, MoA(G) > 10n−20. Now 10n−20 >
8n− 10 when n ≥ 6, which is impossible.

5. Pendant edges incident on different vertices of the cycle with distance less
than bn−22 c:
If e1 and e2 are incident on different vertices of the cycle with distance d(e1, e2) < bn−22 c, then
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there are two more edges contributing at least 4 each to MoA(G). Thus, MoA(G) ≥ 8n − 8.
Again, 8n− 8 > 8n− 10 is impossible.

6. Case when n is odd and d(e1, e2) = bn−22 c:
There are no such graphs because d(e1, e2) = bn−22 c cannot be satisfied for odd n.

7. Case when n is even and d(e1, e2) = bn−22 c:
This implies G ∼= G0

1, the specific unicyclic graph described earlier.
Thus we have considered all the case having at least 2 pendant edges. If G has no pendant
edges, then G ∼= Cn, which is impossible. Now consider the case that G has exactly one pendant
edge and is of the form Cr,p where r + p = n.

Claim II: r = n− 1.
Suppose r = n−m where m ≥ 2. If n and m are of the same parity, then we have
1. Contribution from the cycle Cn−m:

The n−m−2 edges of the cycle Cn−m each contribute at least 4m to MoA(G). The remaining
two edges in Cn−m incident to the path Pm+1 contribute 5m.

2. Contribution from the path Pm+1:
Among the m edges on the path Pm+1, m − 2 edges contribute at least 4 each. The pendant
edge attached to Pm+1 contributes 3(n− 2).

Thus, the minimum additively weighted Mostar index MoA(G) satisfies:

MoA(G) ≥ 4m(n−m− 2) + 10m+ 4(m− 2) + 3(n− 2)

≥ 8(n−m− 2) + 14m+ 3n− 14

= 11n+ 6m− 30

Now, 11n+ 6m− 30 ≥ 11n− 18 > 8n− 10 when n ≥ 6 (since m ≥ 2). This contradiction arises
because MoA(G) cannot exceed 8n− 10 as per the given bound. Therefore, this configuration
for G is impossible under the assumption that n and m have the same parity.

Suppose r = n−m where n and m are of different parity: Then we have
1. Contribution from the cycle Cn−m:

At least n −m − 3 edges of the cycle Cn−m each contribute 4m to MoA(G). Two edges that
share a common vertex with the path Pm+1 contribute 5m.

2. Contribution from the path Pm+1:
Among the m edges on the path Pm+1, m − 3 edges contribute at least 4 each. One edge on
Pm+1 contributes at least 5.

3. Contribution from the pendant edge:
The pendant edge attached contributes 3(n − 2). Thus, the additively weighted Mostar index
MoA(G) satisfies:

MoA(G) ≥ 4m(n−m− 3) + 10m+ 4(m− 3) + 5 + 3(n− 2)

≥ 8(n−m− 3) + 14m+ 3n− 13

= 11n+ 6m− 37.

Now, 11n+ 6m− 37 ≥ 11n− 25 > 8n− 10 when n ≥ 6 (since m ≥ 2). This contradiction arises
because MoA(G) cannot exceed 8n − 10 as per the given bound. Thus m ≥ 2 is impossible
and consequently r = n − 1, implying G ∼= Cn−1,1. According to Proposition 2.5, G = Cn−1,1
specifically when n is odd. �

Next, we will derive the first two upper bounds of the additively weighted Mostar index for
unicyclic graphs. In the context of this discussion, a bridge that is distinct from a pendant edge
is referred to as a non-trivial bridge.
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Lemma 2.8. ([12]). Let e = uv be a non trivial bridge of G. Let G′ be the graph obtained
from G by deleting the edge e, identifying its end vertices u and v to a new vertex z and adding
a new vertex w connected to z by the edge e′. Then

MoA(G′) > MoA(G).

Let Ur,p denote the unicyclic graph consisting of a cycle Cr of length r along with p pendant
edges that are incident at some vertex v of Cr.

Proposition 2.9. For n ≥ 6, r ≥ 3,

MoA(Ur,n−r) =

{
n3 − 2n2r + 3n2 + nr2 + nr − 6n− 4r2 + 6r, if r is even,
n3 − 2n2r + 3n2 + nr2 + nr − 10n− 4r2 + 10r, if r is odd.

Proof. For each pendant edge e in Ur,n−r, the contribution to the additively weighted Mostar
index is given by MoA(e | Ur,n−r) = (n− r+ 3)(n− 2). When r is even, the r− 2 edges in the
cycle Cr contribute 4(n− r) each and the remaining two edges contribute 2(n− r + 4)(n− r).
Thus, the additively weighted Mostar index MoA(Ur,n−r) is:

MoA(Ur,n−r) = (n− r)(n− r + 3)(n− 2) + (r − 2) · 4(n− r) + 2(n− r + 4)(n− r)

= n3 − 2n2r + 3n2 + nr2 + nr − 6n− 4r2 + 6r.

When r is odd, except for one edge in the cycle whose contribution is zero, all other edges have
the same contributions as in the previous case. Therefore, MoA(Ur,n−r) when r is odd is:

MoA(Ur,n−r) = (n− r)(n− r + 3)(n− 2) + (r − 3) · 4(n− r) + 2(n− r + 4)(n− r)

= n3 − 2n2r + 3n2 + nr2 + nr − 10n− 4r2 + 10r.

Hence, the proof is completed. �

Lemma 2.10. Let G = Cr[T1, T2, . . . , Tr] be a unicyclic graph of order n obtained from a cycle
Cr = v1v2 . . . vrv1 by attaching the trees Ti at the vertex vi for i = 1, 2, . . . , r. Then

(a.) MoA(G) ≤ n3 − 2n2r + 3n2 + nr2 + nr − 6n− 4r2 + 6r, if r is even,

(b.) MoA(G) ≤ n3 − 2n2r + 3n2 + nr2 + nr − 10n− 4r2 + 10r, if r is odd,

and equality holds if and only if G ∼= Ur,n−r.

Proof. By sequentially applying Lemma 2.8, we know that MoA(G′) ≥ MoA(G), where G′ is
the graph obtained by attaching |E(Ti)| pendant edges at vertex vi for i = 1, 2, . . . , r. Now, we
aim to prove that MoA(G1) ≥MoA(G′) where G1 = Ur,n−r.

Let di denote the number of pendant edges attached to vertex vi in G′, and let d =
∑r

i=1 di.
Suppose v1 is the vertex in G1 where d pendant edges are attached. Define ni as the number
of vertices in Ti, including vi, then n =

∑r
i=1 ni. We categorize the edges of G into two groups:

Those edges that belong to Ti for i = 1, 2, . . . , r. and those edges that belong to the cycle Cr,
denoted as e = uv ∈ Ti for i = 1, 2, . . . , r and e = vivi+1 ∈ Cr for i = 1, 2, . . . , r. Then

MoA(G′) =

r∑
i=1

∑
e=uv∈Ti

(d(u) + d(v))|nu(e|G′)− nv(e|G′)|

+

r∑
i=1
e∈Cr

(d(vi) + d(vi+1))|nvi(e|G′)− nvi+1
(e|G′)|.
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For each edge e = uv ∈ Ti, i = 1, 2, . . . , r, |nu(e|G′)−nv(e|G′)| = |nu(e|G1)−nv(e|G1)| = n−2.
Also for e = uvi ∈ Ti ∩ G′, d(u) + d(vi) = di + 3 and for e = uvi ∈ Ti ∩ G1, d(u) + d(vi) =∑r

i=1 di + 3 = d+ 3. Thus
r∑

i=1

∑
e=uv∈Ti

(MoA(e|G1)−MoA(e|G′)) = (d2 + 3d)(n− 2)−
r∑

i=1

(d2i + 3di)(n− 2)

= 2

r∑
i,j=1
i 6=j

didj(n− 2) > 0. (1)

For e = vivi+1 ∈ Cr, we consider the following two different cases.
Case I : r = 2k is even: For every edge e = vivi+1 ∈ C2k, |nvi(e|G′)−nvi+1(e|G′)| = (n−ne),
where ne denote the diminishing factor and |nvi(e|G1)− nvi+1(e|G1)| = (n− 2k), clearly ne ≥
2k ∀i = 1, 2, . . . , 2k, thus

|nvi(e|G′)− nvi+1
(e|G′)| = (n− ne) ≤ |nvi(e|G1)− nvi+1

(e|G1)| = (n− 2k).

Also d(vi) + d(vi+1) = di + di+1 + 4 in G′ and in G1, d(vi) + d(vi+1) = 4 for i 6= 1, 2k and
(d(vi) + d(vi+1)) =

∑2k
i=1 di + 4 = d+ 4 for i = 1, 2k. Now, let n−n∗e = max{n−ne : e ∈ C2k}.

Thus
2k∑
i=1

e=vivi+1∈C2k

(MoA(e|G1)−MoA(e|G′))

=

2k−1∑
i=2

e=vivi+1

4(n− 2k) + 2(d+ 4)(n− 2k)−
2k∑
i=1

e=vivi+1

(di + di+1 + 4)(n− ne)

≥ 8k(n− 2k) + 2d(n− 2k)− 2d(n− n∗e)− 8k(n− n∗e) ≥ 0. (2)

Since n − 2k ≥ n − n∗e ∀e ∈ C2k. Thus from (1) and (2), MoA(G1) − MoA(G′) ≥ 0 and
MoA(G) = n3 − 2n2r + 3n2 + nr2 + nr − 6n− 4r2 + 6r, whenever G ∼= G1.
Case II: r = 2k+1 is odd: Now, for every edge e = vivi+1 ∈ C2k+1, |nvi(e|G′)−nvi+1

(e|G′)| =
(n−ne−n0) where n0 denotes the number of vertices equidistant from both vi and vi+1 in G′ and

ne +n0 ≥ 2k+ 1 ∀i = 1, 2, . . . , 2k+ 1. Also, |nvi(e|G1)−nvi+1
(e|G1)| =

{
(n− 2k − 1), i 6= k,

0, i = k.

Thus,

|nvi(e|G′)− nvi+1(e|G′)| = (n− ne − n0) ≤ |nvi(e|G1)− nvi+1(e|G1)| = (n− 2k − 1).

Now, inG′, d(vi)+d(vi+1) = di+di+1+4 and inG1, d(vi)+d(vi+1) =

{
4, for i 6= 1, 2k + 1,

d+ 4, for i = 1, 2k + 1.

Also, let n− n̄e = max{n− ne − n0 : e ∈ C2k+1}. Thus
2k+1∑
i=1

e=vivi+1∈C2k

(MoA(e|G1)−MoA(e|G′))

=

2k+1∑
i=1

e=vivi+1,i6=k

4(n− 2k − 1) + 2(d+ 4)(n− 2k − 1)
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−
2k+1∑
i=1

e=vivi+1

(di + di+1 + 4)(n− ne − n0)

≥ 8k(n− 2k − 1) + 2d(n− 2k − 1)− 2d(n− n̄e)− (8k + 4)(n− n̄e)
≥ −4(n− 2k − 1). (3)

Thus, from (1) and (3), MoA(G1) −MoA(G′) ≥ 2
∑r

i,j=1
i6=j

didj(n − 2) − 4(n − 2k − 1) > 0, if

d > 2. When d = 2, MoA(G1) −MoA(G′) ≥ 2n > 0, thus MoA(G1) −MoA(G) ≥ 0 and
MoA(G) = n3 − 2n2r + 3n2 + nr2 + nr − 10n− 4r2 + 10r, whenever G ∼= G1. �

Theorem 2.11. Let G ∈ Un, n ≥ 4. Then MoA(G) ≤ n3− 3n2 + 2n− 6 and the equality holds
if and only if G ∼= U3,n−3.

Proof. Let G ∈ Un be the graph with the maximum additively weighted Mostar index. Accord-
ing to Lemma 2.8, all the bridges of G must be pendant edges. Additionally, Lemma 2.10 states
that all pendant edges should be attached to a single vertex. Therefore, after applying these
transformations iteratively, the resulting unicyclic graph G1 must take the form G1 = Ur,p.
Let G2 = Ur−2,p+2 denote the graph obtained by transforming two cyclic edges into pendant
edges. It follows that |V (G1)| = |V (G2)| = n.

In simpler terms, starting from G, which has the highest additively weighted Mostar index
in its class of unicyclic graphs with n vertices, we can transform it step by step and ultimately,
this process leads us to graph G1, which is of the form Ur,p, and then to graph G2, which is of
the form Ur−2,p+2. When r = 2k is even, we have

MoA(G2)−MoA(G1) = (p+ 2)(n− 2)(p+ 5) + 4(n− p− 4)(p+ 2) + 2(p+ 2)(p+ 6)

− p(n− 2)(p+ 3)− 4(n− p− 2)(p)− 2(p+ 4)(p)

= 4np+ 18n− 16p− 28 > 0.

When r = 2k + 1 is odd, then

MoA(G2)−MoA(G1) = (p+ 2)(n− 2)(p+ 5) + 4(n− p− 5)(p+ 2) + 2(p+ 2)(p+ 6)

− p(n− 2)(p+ 3)− 4(n− p− 3)(p)− 2(p+ 4)(p)

= 4np+ 18n− 16p− 36 > 0.

Thus, MoA(G2) −MoA(G1) > 0. Therefore, by repeatedly applying this transformation, we
get either the graph G3 = U4,n−4 or G4 = U3,n−3 having the maximum additively weighted
Mostar index. Now, if |V (G3)| = |V (G4)| = n, then

MoA(G4)−MoA(G3) = (n)(n− 2)(n− 3) + 8(n− 4) + 2(n+ 1)(n− 3)

− 8(n− 4)− 2n(n− 4)− (n− 1)(n− 2)(n− 4)

= 2n2 − 12n+ 34 > 0.

Thus, MoA(G4)−MoA(G3) > 0. So, if G ∈ Un, then MoA(G) ≤ MoA(U3,n−3) = n3 − 3n2 +
2n− 6. �

Consider the graph G′, which is formed by attaching n− 5 pendant edges and a path of length
2 to a vertex v of the cycle C3. By using the earlier findings, we aim to determine the second
highest value of the additively weighted Mostar index among unicyclic graphs.
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Theorem 2.12. Let G ∈ Un|{U3,n−3}, n ≥ 7. Then MoA(G) ≤ n3 − 5n2 + 14n − 40 and the
equality holds if and only if G ∼= U4,n−4.

Proof. Let G ∈ Un|{U3,n−3}, n ≥ 7 be a graph with the maximum additively weighted Mostar
index. According to Lemma 2.10, all the pendant edges of G must be attached to a single
vertex. Applying the transformation outlined in Theorem 2.11, the cycle in G cannot exceed a
length of 5. Therefore, G must be one of the three graphs: G1 = U4,n−4, G2 = U5,n−5, or G′.
Evaluating the differences in their additively weighted Mostar indices, we find:

MoA(G1)−MoA(G′) = 4n− 24 > 0,

MoA(G1)−MoA(G2) = 2n2 − 6n+ 10 > 0.

Thus, MoA(G) ≤ n3 − 5n2 + 14n− 40, and equality holds if and only if G ∼= U4,n−4.
In summary, the graph G, which maximizes the additively weighted Mostar index among

unicyclic graphs of n vertices, is U4,n−4. �

Now, let’s explore some mathematical properties of the additively weighted Mostar index for
various classes of graphs. A variant of the cut method can be employed to calculate the
additively weighted Mostar index of lattice grids and other nanostructures. However, we aim
to establish a more general expression by determining the additively weighted Mostar index of
the Cartesian product of graphs.

Theorem 2.13. Let G1 = (n1,m1) and G2 = (n2,m2) be two connected graphs. Then,

MoA(G1 ×G2) = n21MoA(G2) + 4n1m1Mo(G2) + n22MoA(G1) + 4n2m2Mo(G1).

Proof. By the definition of additively weighted Mostar index,

MoA(G1 ×G2) =
∑

(u,v)∈E(G1×G2)
u=(u1,v1),v=(u2,v2)

(d(u) + d(v))|nu(e|G1 ×G2)− nv(e|G1 ×G2)|

=
∑

(u,v)∈E(G1×G2)
u=(u1,v1),v=(u1,v2)

(d(u) + d(v))|nu(e|G1 ×G2)− nv(e|G1 ×G2)|

+
∑

(u,v)∈E(G1×G2)
u=(u1,v1),v=(u2,v1)

(d(u) + d(v))|nu(e|G1 ×G2)− nv(e|G1 ×G2)|

=
∑

(u,v)∈E(G1×G2)
u=(u1,v1),v=(u1,v2)

(2d(u1) + d(v1) + d(v2))(n1|nv1(e|G2)− nv2(e|G2)|)

+
∑

(u,v)∈E(G1×G2)
u=(u1,v1),v=(u2,v1)

(d(u1) + d(u2) + 2d(v1))(n2|nu1
(e|G1)− nu2

(e|G1)|)

= n1
∑

v1v2∈E(G2)

(d(v1) + d(v2))(n1|nv1(e|G2)− nv2(e|G2)|)

+
∑

v1v2∈E(G2)
u1∈G1

(2d(u1))(n1|nv1(e|G2)− nv2(e|G2)|)
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+ n2
∑

u1u2∈E(G1)

(d(u1) + d(u2))(n2|nu1(e|G1)− nu2(e|G1)|)

+
∑

u1u2∈E(G1)
v1∈G2

(2d(v1))(n2|nu1
(e|G1)− nu2

(e|G1)|)

= n21MoA(G2) + 4n1m1Mo(G2) + n22MoA(G1) + 4n2m2Mo(G1).

�

Now, we determine the relationship between the additively weighted Mostar index and some
other degree-based graph invariants.

Theorem 2.14. Let G be a graph with diameter at most two. Then

MoA(G) =
∑

uv∈E(G)

|d(u)2 − d(v)2|.

Proof. For every edge e = uv in G, we have nu(e|G) = d(u)− |Nu(e|G) ∩Nv(e|G)|. Therefore,

MoA(G) =
∑

uv∈E(G)

(d(u) + d(v))|nu(e|G)− nv(e|G)|

=
∑

uv∈E(G)

(d(u) + d(v))|d(u)− |Nu(e|G) ∩Nv(e|G)| − (d(v)− |Nu(e|G) ∩Nv(e|G)|)|

=
∑

uv∈E(G)

(d(u) + d(v))|d(u)− d(v)| =
∑

uv∈E(G)

|d(u)2 − d(v)2|.

�

Theorem 2.15. Let T be a tree on n vertices. Then MoA(T ) ≥
∑

e=uv∈E(T ) |d(u)2 − d(v)2|,
with equality if and only if T is isomorphic with Sn.

Proof. For every edge e = uv on T , Nu(e|G) must have at least as many vertices as the degree
of the vertex u. Thus, |nu(e|T )− nv(e|T )| ≥ |d(u)− d(v)|. Therefore,

MoA(T ) =
∑

e=uv∈E(T )

(d(u) + d(v))|nu(e|T )− nv(e|T )|

≥
∑

e=uv∈E(T )

(d(u) + d(v))|d(u)− d(v)|

=
∑

e=uv∈E(T )

|d(u)2 − d(v)2|.

Now, the equality holds iff |nu(e|G) − nv(e|G)| = |d(u) − d(v)| for every edge e ∈ T , which
which is equivalent to every edge being a pendant edge. Therefore, G ∼= Sn. �

Theorem 2.16. For a bipartite graph G = (V,E), 0 ≤ MoA(G) ≤ (n − 2)M1(G) and the
equality holds if and only if G ∼= C2k and G ∼= Sn, respectively.
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Proof. Let |G| = n, since G = (V,E) is a bipartite graph for every edge e = uv, nu(e|G) +
nv(e|G) = n. For convenience, take nu(e|G) ≥ nv(e|G) for every edge e = uv. Therefore,
|nu(e|G)− nv(e|G)| = n− 2nv(e|G).

MoA(G) =
∑

e=uv∈E
(d(u) + d(v))|nu(e|G)− nv(e|G)|

=
∑

e=uv∈E
(d(u) + d(v))(n− 2nv(e|G))

= n
∑

e=uv∈E
(d(u) + d(v))− 2

∑
e=uv∈E

(d(u) + d(v))nv(e|G))

= nM1(G)− 2
∑

e=uv∈E
(d(u) + d(v))nv(e|G)).

We know, 1 ≤ nv(e|G) ≤ n

2
. Therefore,

nM1(G)− 2
∑

e=uv∈E
(d(u) + d(v))

n

2
≤MoA(G) ≤ nM1(G)− 2

∑
e=uv∈E

(d(u) + d(v))1

nM1(G)− 2
n

2
M1(G) ≤MoA(G) ≤ nM1(G)− 2M1(G)

0 ≤MoA(G) ≤ (n− 2)M1(G).

The equality on the right-hand side holds if and only if nv(e|G) = 1, for every edge e = uv in
G. Similarly, the equality on the left-hand side holds if and only if nv(e|G) = n

2 , for every edge
e = uv in G. Therefore, the left-hand side equality holds if and only if G is the cycle graph
C2k, and the right-hand side equality holds if and only if G = Sn. �

We now examine the properties of the additively weighted Mostar index across various
classes of graphs.

Theorem 2.17. ([24]). For every tree T , the Zagreb index of T is even.

Theorem 2.18. For every tree T , the additively weighted Mostar index of T is even.

Proof. Let T be a tree of order n. For every edge e = uv ∈ E(T ), nu(e|T ) + nv(e|T ) = n.
Assume that nu(e|T ) ≥ nv(e|T ), then |nu(e|T )− nv(e|T )| = n− 2nv(e|T ). Thus

MoA(T ) =
∑

e=uv∈E(T )

(d(u) + d(v))|nu(e|T )− nv(e|T )|

=
∑

e=uv∈E(T )

(d(u) + d(v))(n− 2nv(e|T ))

= n
∑

e=uv∈E(T )

(d(u) + d(v))− 2
∑

e=uv∈E(T )

(d(u) + d(v))nv(e|T )

= nM1(T )− 2
∑

e=uv∈E(T )

(d(u) + d(v))nv(e|T ),

since the first Zagreb index (M1(T )) of a tree is even. The result follows. �
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We can extend this result onto the class of connected bipartite graphs.

Theorem 2.19. ([24]). The Zagreb index of a connected bipartite graph is even.

Theorem 2.20. Let G be a connected bipartite graph. Then the additively weighted Mostar
index of G is even.

Proof. Let G be a connected bipartite graph of order n. For every edge e = uv ∈ E(G),
nu(e|G) + nv(e|G) = n. Without loss of generality, assume that nu(e|T ) ≥ nv(e|T ), then
|nu(e|T )− nv(e|T )| = n− 2nv(e|T ). Thus

MoA(G) =
∑

e=uv∈E(G)

(d(u) + d(v))|nu(e|G)− nv(e|G)|

=
∑

e=uv∈E(G)

(d(u) + d(v))(n− 2nv(e|G))

= n
∑

e=uv∈E(G)

(d(u) + d(v))− 2
∑

e=uv∈E(G)

(d(u) + d(v))nv(e|G)

= nM1(G)− 2
∑

e=uv∈E(G)

(d(u) + d(v))nv(e|G),

since the first Zagreb index (M1(G)) of a connected bipartite graph is even. The result follows.
�

3 Application of additively weighted Mostar index

Figure 1: Octane Isomers.

In this section, we examine the relationship between the additively weighted Mostar index
and various chemical properties of octane isomers exhibited in Figure 1. All experimental values
of the chemical compounds are sourced from [16]. Using the data from Table 1, we can establish
relationships among the acentric factor, total surface area (TSA), enthalpy of vaporization
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(HVAP), standard enthalpy of vaporization (DHVAP), and entropy with the additively weighted
Mostar indices of the octane isomers.

The correlations between the additively weighted Mostar index and the acentric factor, TSA,
HVAP, DHVAP, and entropy are approximately -0.9835, -0.6005, -0.7706, -0.8514, and -0.9174,
respectively. These results indicate a strong linear relationship between the additively weighted
Mostar index and both the acentric factor and entropy of the octane isomers.

Additionally, we present a comparative study of the additively weighted Mostar index with
other distance-based topological indices, such as the Szeged index (Sz), Mostar index (Mo),
edge Mostar index (Moe), first eccentric connectivity index (S1), second eccentric connectivity
index (S2), first status connectivity index (ζ1), second status connectivity index (ζ2), and
weighted Szeged index (wSz). Our findings suggest that the additively weighted Mostar index
is a superior predictor of the acentric factor and entropy of octane isomers compared to other
topological indices; see Tables 2 and 3.

Table 1: Acentric factor, total surface area (TSA), enthalpy of vaporizatian (HVAP), stan-
dard enthalpy of vaporization (DHVAP), entropy, additively weighted Mostar index and other
distance-based topological indices of the numbered octane isomers.

No Acent Factor TSA HVAP DHVAP Entropy MoA Sz Mo Moe S1 S2 ζ1 ζ2 wSz

1 0.4 415.3 73.19 9.915 111.67 84 84 24 24 280 2856 74 200 322
2 0.38 407.85 70.30 9.484 109.84 100 79 26 26 260 2441 65 154 324
3 0.37 397.34 71.30 9.521 111.26 104 76 28 28 248 2224 63 144 318
4 0.37 396.04 70.91 9.483 109.32 112 75 30 30 244 2157 61 136 316
5 0.36 379.04 71.7 9.476 109.43 120 72 32 32 228 1865 56 113 306
6 0.34 405.11 67.7 8.915 103.42 132 71 30 30 224 1796 54 105 330
7 0.35 384.93 70.2 9.272 108.02 128 70 32 32 228 1853 54 105 318
8 0.34 388.11 68.5 9.029 106.98 120 71 30 30 240 2052 56 113 320
9 0.36 395.08 68.6 9.051 105.72 116 74 28 28 212 1609 52 97 326
10 0.32 389.79 68.5 8.973 104.74 148 67 34 34 216 1664 52 97 322
11 0.34 376.91 70.2 9.316 106.59 124 68 32 32 232 1940 54 105 314
12 0.33 368.10 69.7 9.209 106.06 136 67 34 34 196 1349 43 66 308
13 0.31 366.99 69.3 9.081 101.48 156 64 36 36 208 1520 45 72 314
14 0.30 371.75 67.3 8.826 101.31 152 63 34 34 192 1292 41 60 326
15 0.31 392.19 64.87 8.402 104.09 148 66 32 32 204 1461 43 66 332
16 0.29 377.40 68.1 8.897 102.06 164 62 36 36 212 1597 43 66 324
17 0.32 368.93 68.37 9.014 102.39 144 65 34 34 200 1420 41 60 320
18 0.26 390.47 66.2 8.41 93.06 180 58 36 36 176 1060 34 40 338

Table 2: Correlation coefficient (R), coefficient of determination(R2) and standard error of
estimates (SEE) between chemical properties of octane isomers and their distance-based topo-
logical indices.

Acentric Factor TSA HVAP
R R2 SEE R R2 SEE R R2 SEE

MoA -0.9835 0.9674 0.0065 -0.6005 0.3606 11.7285 -0.7706 0.5938 1.3312
Sz 0.9732 0.9471 0.0083 0.7210 0.5199 10.1632 0.7381 0.5447 1.409
Mo -0.8874 0.7874 0.0166 -0.8139 0.6624 8.5226 0.5499 0.3024 1.7444
Moe -0.8874 0.7874 0.0166 -0.8139 0.6624 8.5226 -0.5499 0.3024 1.7444
S1 0.8823 0.7785 0.0170 0.6653 0.4426 10.9508 0.7612 0.5794 1.3545
S2 0.8787 0.7721 0.0172 0.6835 0.4672 10.7067 0.7665 0.5875 1.3414
ζ1 0.9328 0.8701 0.0130 0.7032 0.4945 10.4287 0.6141 0.3772 1.2825
ζ2 0.9157 0.8384 0.0145 0.7303 0.5333 10.0201 0.7893 0.6230 1.2824
wSz -0.4161 0.1732 0.0328 0.4273 0.1826 13.2608 -0.6840 0.4679 1.5236
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Table 3: Correlation coefficient (R), coefficient of determination(R2) and standard error of
estimates (SEE) between chemical properties of octane isomers and their distance-based topo-
logical indices.

DHVAP Entropy
R R2 SEE R R2 SEE

MoA -0.8514 0.7249 0.2072 -0.9174 0.8415 1.8537
Sz 0.8202 0.6727 0.2261 0.8778 0.7705 2.2308
Mo -0.6531 0.4266 0.2992 -0.7549 0.5699 3.0539
Moe -0.6531 0.4266 0.2992 -0.7549 0.5699 3.0539
S1 0.8300 0.6890 0.2204 0.8545 0.7301 2.4193
S2 0.8343 0.6961 0.2178 0.8382 0.7026 2.5395
ζ1 0.8517 0.7254 0.2071 0.8779 0.7707 2.2300
ζ2 0.7893 0.6230 0.2080 0.8458 0.7153 2.4845
wSz -0.6840 0.4679 0.3041 -0.5597 0.3133 3.8588

4 Conclusion
In this paper, we computed the first two lower and upper bounds of the additively weighted
Mostar index for unicyclic graphs of a given order. We established several properties of the
additively weighted Mostar index for different classes of graphs. Additionally, we determined
the correlation between the additively weighted Mostar index and the chemical properties of
octane isomers as well as benzenoid hydrocarbons. We also propose the following problems for
further study.

Problem 4.1. Investigate the inverse problem of the additively weighted Mostar index for
trees, bipartite graphs, and connected graphs.

Problem 4.2. Determine the bounds of the additively weighted Mostar index for connected
graphs and bipartite graphs.
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