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Abstract

The first general multiplicative Zagreb index P a1 (G) is the
product of the degree of each vertex v in G, raised to the power
a and the second general multiplicative Zagreb index P a2 (G) is
the product of the degree of each vertex v in G, raised to the
power a times the degree of v, where a is a non-zero real number.
In this study, we present bounds on the general multiplicative
Zagreb indices for trees and unicyclic graphs. We also provide
bounds for the first general multiplicative Zagreb index for trees.
Additionally, we identify all the extremal graphs for each bound
mentioned as best as possible.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction

In this study, we examine connected simple graphs. V (G) and E(G) represent the vertex set
and edge set of a graph G, respectively. The degree of v, degG(v), for a vertex v in G, is
the number of edges incident to v. A vertex with degree one is called a pendant vertex. To
indicate the highest degree of G, we utilize ∆ = ∆(G). The graph G + uv represents the
graph that is created by adding an edge uv to any two nonadjacent vertices u and v in G.
The length of the shortest path between two vertices, u and v, is represented by dG(u, v). For
each vertex v ∈ V (G), the greatest distance between v and every other vertex in G is known
as the eccentricity of vertex v in G, eccG(v). The diameter of G, represented by d(G), is its
maximum eccentricity, and the radius of G, represented by r(G), is its minimum eccentricity.
A diametrical path of G is the path Pd = v0v1 · · · vd.

A connected graph without any cycles is called a tree. A path and a star of order n are
indicated by Pn and Sn respectively. For integers l ≥ 2 and n1 ≥ n2 ≥ 1, Pl(n1, n2) is a tree
obtained from the path Pl by joining one end vertex of Pl to n1 new vertices and the other end
vertex of Pl to n2 pendant vertices. Trees can be attached to any vertex in a cycle graph to
create a unicyclic graph. A unicyclic graph with n vertices has n edges. A graph obtained by
adding a new edge between the two pendant vertices of Sn is denoted by S+

n .
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Suppose that V (G) = {v1, v2, . . . , vn} with deg(v1) ≥ deg(v2) ≥ . . . ≥ deg(vn). Let
deg(vi) = xi for i = 1, 2, . . . , n. The non-increasing sequence D(G) = d1, d2, . . . , dn is called the
degree sequence of G. Furthermore, D(G) = [xa11 , xa22 , . . . , xatt ] means that the degree sequence
of G consists of xi (appearing ai times), where i = 1, 2, . . . , t. The superscript 1 of xi is dropped
if ai = 1. If every other vertex in the set Γ ⊆ V (G) is adjacent to at least one vertex in Γ, then
the set is referred to as a dominant set. The number of vertices in the smallest dominating
set is known as the domination number, represented by γ(G). Additionally, for definitions of
terminology not explicitly used in this article, consult [1].

In chemical and pharmaceutical research, topological indices are frequently employed for
activities including combinatorial library design, drug design, chemical documentation, isomer
discrimination, toxicity hazard evaluations, and QSPR/QSAR analysis. These indices make
it possible to translate chemical structures into numerical values, which simplifies correlations
with chemical and physical characteristics such as boiling temperatures and molar heats of
formation. Topological indices quantify molecular structures and offer useful information for
understanding chemical behavior, forecasting features, and improving molecular design.

The goal of recent drug design research has been to determine a chemical’s qualities based
solely on its molecular structure. Topological indices are used to quantify the biological, physic-
ochemical, environmental, and toxicological characteristics of molecules. Preliminary research
employing quantitative structure-activity relationships (QSAR) enables the selection of the most
promising compounds, reducing the number of compounds synthesized because both trial-and-
error synthesis and random screening for activity are time-consuming and unfeasible [2]. Many
topological indices based on degree [3, 4] and distance [5–7] have been thoroughly investigated.

There are several uses for multiplicative Zagreb indices, which have been studied more in
the last ten years. Because they are connected with many physical properties of molecules,
they are important in the fields of chemistry, pharmaceutical sciences, materials science, and
engineering. These chemical structures are described using graph theory, in which a compound’s
atoms are represented by the vertices of a graph and its chemical bonds by its edges.

In 1972, Gutman and Trinajstić presented the first and second Zagreb indices, which are
degree-based molecular descriptors [8]. Zagreb indices are among the oldest topological indices,
and because of their chemical significance, a lot of research has been done on them. Bounds
on the first and second Zagreb indices for trees were examined by Lin [9] and Borovićanin [10].
The first and second multiplicative Zagreb indices of trees of a particular order were examined
by Gutman [11] and Xu and Hua [12]. Bounds on these indices for trees with a specified number
of maximum degree vertices and domination number [13–15], unicyclic and bicyclic graphs with
given (total) domination [16], k-trees [17], molecular graphs [18], graphs of given order, size,
and other parameters [19, 20], some derived graphs [21], graph operations [22, 23]; chemical
trees [24] and bipartite graphs of given diameter [25] were examined.

In [3], P ai , (i = 1, 2) indices were introduced.

P a1 (G) =
∏

v∈V (G)

deg(v)a and P a2 (G) =
∏

v∈V (G)

deg(v)a deg(v),

where a 6= 0 is a real number. This is the definition of the first and second general multiplicative
Zagreb indices. The traditional multiplicative Zagreb indices are generalized by these indices.
The first multiplicative Zagreb index is P 2

1 for a = 2, and the Narumi-Katayama index is P 1
1

for a = 1. P 1
2 is the second multiplicative Zagreb index for a = 1. Note that we may restate

the previous formula as P a1 (G) = P a1 (X) and P a2 (G) = P a2 (X) if the degree sequence of G is
represented by D(G) = X.

Vetrik and Balachandran presented P ai , (i = 1, 2) for trees with a given order, matching
number and independence number [3, 26, 27]. Nanotubes [28], graphs with applications to
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QSPR modeling [29], graphs with a number of bridges [30], graphs with a small number of
cycles [31], graphs with a given clique number [4], unicyclic graphs [32], unicyclic graphs with
a matching number [27], and polycyclic aromatic hydrocarbons and benzenoid systems [33] are
all analyzed in great detail.

For trees with a known maximum degree and diameter, as well as for unicyclic graphs with
a particular diameter for a > 0, we give an upper bound for the P a1 index and a lower bound
for the P a2 index. Additionally, for trees with an identified domination number for a > 0, we
give a lower bound for the P a1 index. We also identify all the extremal graphs, suggesting that
our bounds are optimal.

2 Preliminary results
Proposition 2.1. For a, b ∈ Z≥2, ab ≥ a+ b.

Proposition 2.2. For an integer n ≥ 5, 2
n
2 > n.

Proposition 2.2 can be proved using the principle of mathematical induction.

Proposition 2.3. For a, b ∈ Z≥2, ab ≥ 2(a+ b− 2), and the equality holds when a = b = 2.

Proof. ab− 2(a+ b− 2) = ab− 2a− 2b+ 4 = a(b− 2)− 2(b− 2) = (b− 2)(a− 2) ≥ 0 because
a, b ≥ 2. Therefore, ab ≥ 2(a+ b− 2). �

Proposition 2.4. Let G be a graph different from Pn. Let u, v ∈ V (G) such that degG(v) = 1
and degG(u) ≥ 2. Let u′ ∈ V (G) such that uu′ ∈ E(G) and u′ is at a larger distance from v in
G than u. Let G′ = G− uu′ + vu′. Then for a > 0,

P a1 (G) ≤ P a1 (G′) and P a2 (G) ≥ P a2 (G′).

Proof. Since G′ = G − uu′ + vu′, we have degG(u) = p ≥ 2, degG(v) = 1, degG′(u) = p − 1,
and degG′(v) = 2. The degrees of all other vertices remain unchanged. Thus, for a > 0,

P a1 (G)

P a1 (G′)
=

pa

2a(p− 1)a
=

(
p

2(p− 1)

)a
≤ 1,

hence
P a1 (G) ≤ P a1 (G′).

Similarly,
P a2 (G)

P a2 (G′)
=

pap

22a(p− 1)a(p−1)
=

(
pp

22(p− 1)(p−1)

)a
≥ 1,

thus
P a2 (G) ≥ P a2 (G′) for p ≥ 2.

�

A tree that has exactly one vertex with a degree greater than two is said to be starlike.
Consequently, it possesses a singular vertex of maximum degree ∆ ≥ 3. Let T ∗ represent the
set of ∆ degree starlike trees.

Proposition 2.5. For a tree T ∈ T ∗,

P a1 (T ) = ∆a · 2a(n−∆−1) and P a2 (T ) = ∆a∆ · 22a(n−∆−1).
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Proof. Let ni be the number of vertices of degree i. From the definition of a starlike tree and
the Handshaking Lemma, we have

n1 + n2 + n∆ = n⇒ n1 + n2 = n− 1, (1)
n1 + 2n2 + ∆n∆ = 2(n− 1)⇒ n1 + 2n2 + ∆ = 2n− 2. (2)

By combining Equations (1) and (2), we have n2 = n − ∆ − 1 and n1 = ∆. Therefore,
D(T ) = [∆, 2(n−∆−1), 1∆].

From the definition of P a1 and P a2 of a graph with respect to its degree sequence, we have

P a1 (T ) = ∆a · 2a(n−∆−1) · 1a∆ = ∆a · 2a(n−∆−1),

and
P a2 (T ) = ∆a∆ · 22a(n−∆−1) · 1a∆ = ∆a∆ · 22a(n−∆−1).

�

3 Main results

3.1 Trees with a given diameter
Let the set of all trees of order n and diameter d be represented as Tn,d, where 1 ≤ d ≤ n− 1.
Only P2 and Sn have d = 1 and d = 2, respectively, whereas Pn is the only tree with d = n− 1.
Consequently, we will only take into account trees whose diameter is d ≥ 3.

Let Tn,d,i represent the tree that is produced by attaching n− d− 1 pendant vertices to vi
for 1 ≤ i ≤ d − 1 from Pd : v0v1 · · · vd. Tn,d,2, for example, is displayed in Figure 1. Consider
the set Tn,d = {Tn,d,i : 1 ≤ i ≤ d− 1}.

n− d− 1

v0 v1 v2 vd−2 vd−1 vd

Figure 1: Tree Tn,d,2.

Lemma 3.1. Let T ∈ Tn,d, where 3 ≤ d ≤ n− 2. Then
D(T ) = [n− d+ 1, 2d−2, 1n−d+1] if and only if T ∈ Tn,d.

Proof. Let T ∈ Tn,d. Clearly, T ∈ Tn,d and D(T ) = [n − d + 1, 2d−2, 1n−d+1]. Conversely, let
T ∈ Tn,d and D(T ) = [n− d+ 1, 2d−2, 1n−d+1]. We need to show that T ∈ Tn,d.

Let Pd : v0v1 · · · vd be the diametrical path of T . Clearly, v0 and vd are pendant vertices
in T . Then degT (vi) ≥ 2 for i = 1, 2, . . . , d − 1. Since D(T ) = [n − d + 1, 2d−2, 1n−d+1], there
are just d − 1 vertices of degree greater than 1 in T . If one of the vertices with maximum
degree is not in {v1, v2, . . . , vd−1}, then there exists i ∈ {1, 2, . . . , d− 1} such that degT (vi) = 3
and degT (vj) = 2 for all j ∈ {1, 2, . . . , d − 1} r {i}. Clearly, degT (v0) 6= n − d + 1 and
degT (vd) 6= n− d+ 1 otherwise the diameter of T is greater than d. Thus, there are at least d
vertices of degree greater than 1. This is a contradiction to D(T ) = [n− d+ 1, 2d−2, 1n−d+1].

Therefore, there exists k ∈ {1, 2, . . . , d− 1} such that degT (vk) = n− d+ 1. Since D(T ) =
[n−d+ 1, 2d−2, 1n−d+1], vk is a unique vertex whose degree is n−d+ 1 in T and 1 ≤ k ≤ d−1.
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The number of vertices whose degree is 2 in {v0, v1, . . . , vd} is equal to d+1−2−1 = d−2, which
is the same as in D(T ) = [n− d+ 1, 2d−2, 1n−d+1]. Thus, there is no vertex u /∈ {v0, v1, . . . , vd}
such that degT (u) ≥ 3. Hence, T ∈ Tn,d. �

Theorem 3.2. Let T ∈ Tn,d, where 3 ≤ d ≤ n− 2. For a > 0, we have

P a1 (T ) ≥ (n− d+ 1)a2a(d−2) and P a2 (T ) ≤ (n− d+ 1)a(n−d+1)22a(d−2).

The equalities hold if and only if T ∈ Tn,d.

Proof. Let T ′ be a tree with the smallest P a1 (or the largest P a2 ) index among trees with n
vertices and diameter d. We aim to show by contradiction that T ′ ∈ Tn,d. Assume that
T ′ ∈ Tn,d but T ′ /∈ Tn,d.

Since T ′ /∈ Tn,d, there are two vertices u and v on the path Pd : v0v1 · · · vd (the diametrical
path of T ′) such that degT ′(u) = r ≥ 3 and degT ′(v) = q ≥ 3. Without loss of generality,
consider q ≥ r ≥ 3. Let u1, u2, . . . , ur−2 be the vertices adjacent to u that are outside of Pd.
That is, ui /∈ {v0, v1, . . . , vd} for i = 1, 2, . . . , r − 2.

Let T ′′ = T ′ − {uu1, uu2, . . . , uur−2}+ {vu1, vu2, . . . , vur−2}. Clearly, T ′′ ∈ Tn,d. We have
degT ′(u) = r, degT ′(v) = q, degT ′′(u) = 2, and degT ′′(v) = q+r−2, while degT ′(x) = degT ′′(x)
for all x ∈ V (T ′) \ {u, v}. Thus,

P a1 (T ′)

P a1 (T ′′)
=

raqa

2a(q + r − 2)a
=

(
rq

2(q + r − 2)

)a
.

By Proposition 2.3, we have rq
2(q+r−2) > 1, so Pa1 (T ′)

Pa1 (T ′′) > 1, implying P a1 (T ′) > P a1 (T ′′), which is
a contradiction. Similarly, we can show that P a2 (T ′) < P a2 (T ′′), which is again a contradiction.
Therefore, T ′ ∈ Tn,d.

By Lemma 3.1, a tree T ∈ Tn,d has a degree sequence D(T ) = [n− d+ 1, 2d−2, 1n−d+1], and
clearly,

P a1 (T ) = (n− d+ 1)a2a(d−2) and P a2 (T ) = (n− d+ 1)a(n−d+1)22a(d−2).

�

3.2 Trees with a given domination number

Any tree T with n vertices is a bipartite graph, where each partite set is a dominant set. As
a result, there are at most n

2 vertices in one of the partite sets. We have 1 ≤ γ ≤ n
2 for every

tree T with n vertices and domination number γ. The inequalities are tight for all trees except
for T being Sn or Pn (for even n), in which case equality holds on the corresponding sides.

The set of all trees of order n and domination number γ is represented by Tn,γ . Let Tn,γ
represent a tree that is created by joining γ − 1 pendant vertices of Sn−γ+1 with a path of
length 1. D(Tn,γ) = [n − γ, 2γ−1, 1n−γ ] as a result. For instance, T4,1 is S4, T4,2 is P4, T5,2 is
P2(2, 1), and T5,3 is P5.

Theorem 3.3. Let T ∈ Tn,γ , and a > 0. Then

P a1 (T ) ≥ (n− γ)a2a(γ−1).

Equality holds if and only if T is Tn,γ .
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Proof. If ∆(T ) = 2 and n ≥ 2, then T ∼= Pn. For n = 2, T ∼= T2,1
∼= P2, thus

P a1 (T ) = P a1 (T2,1) = P a1 (P2).

For n = 3, T ∼= T3,1
∼= P3, thus

P a1 (T ) = P a1 (T3,1) = P a1 (P3).

For n = 4, T ∼= T4,2
∼= P4, thus

P a1 (T ) = P a1 (T4,2) = P a1 (P4).

This shows that the equality holds for n ≤ 4. If n ≥ 5, then

P a1 (Pn) = 2a(n−2).

Assume that γ(Pn) = n
2 . So, for a > 0 and n ≥ 5, using Proposition 2.2, we have

P a1 (Pn)

(n− γ)a2a(γ−1)
=

2a(n−2)

(n− n
2 )a2a(n2−1)

=

(
2
n
2

n

)a
> 1.

Thus, P a1 (Pn) > (n− γ)a2a(γ−1).
Therefore, when ∆(T ) = 2, the theorem is true. Trees with ∆(T ) ≥ 3 are now under

consideration. Let d be the diameter of T , and let Pd : v0v1 · · · vd be the diametrical path of T .
Then degT (v0) = degT (vd) = 1. Since D(Tn,γ) = [n − γ, 2γ−1, 1n−γ ], we have ∆ ≤ n − γ. Let
Γ(T ), or simply Γ, be a dominant set of T such that |Γ| = γ(T ).

We will use the Principle of Mathematical Induction to prove the theorem for ∆(T ) ≥ 3.
The trees that satisfy the equality in the preceding theorem for n ≤ 5 and ∆(T ) ≥ 3 are
T4,1
∼= S4, T5,2, and T5,1

∼= S5. Assume that for |T ′| = n− 1, the thesis holds true, that is,

P a1 (T ′) ≥ (n− 1− γ)a2a(γ−1).

Let T ′ = T − v0. Note that

degT ′(v) = degT (v), ∀v ∈ V (T ) \ {v0, v1}.

Also,

degT ′(v1) = degT (v1)− 1.

We need to show that the theorem is true for |T | = n. Now consider two cases:
1. If v0 /∈ Γ(T ), then v0 /∈ Γ(T ′), and thus γ(T ′) = γ(T ) and degT (v1) ≥ 2. Since
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T ′ = T − v0, we have degT (v0) = 1 and degT ′(v1) = degT (v1)− 1 ≥ 1. Then

P a1 (T ) =
∏

v∈V (T )

(degT (v))a

=

 ∏
v 6=v0,v1

(degT (v))a

 (degT (v0))a(degT (v1))a

=

∏
v 6=v1

(degT ′(v))a

 (degT (v1)− 1)a
(degT (v1))a

(degT (v1)− 1)a
(degT (v0))a

=

∏
v 6=v1

(degT ′(v))a

 (degT ′(v1))a
(degT (v1))a

(degT (v1)− 1)a
(degT (v0))a

=

 ∏
v∈V (T ′)

(degT ′(v))a

( degT (v1)

(degT (v1)− 1)
degT (v0)

)a
= P a1 (T ′)

(
degT (v1)

(degT (v1)− 1)

)a
because degT (v0) = 1.

From the hypothesis,

P a1 (T ) ≥ 2a(γ−1)(n− 1− γ)a
(

degT (v1)

(degT (v1)− 1)

)a
= 2a(γ−1)(n− γ)a

(n− 1− γ)a

(n− γ)a

(
degT (v1)

(degT (v1)− 1)

)a
= 2a(γ−1)(n− γ)a

 n−1−γ
n−γ

degT (v1)−1
degT (v1)

a

.

Since n−1−γ
n−γ = 1− 1

n−γ and degT (v1)−1
degT (v1) = 1− 1

degT (v1) and degT (v1) ≤ n−γ, we have 1
degT (v1) ≥

1
n−γ , thus

n−1−γ
n−γ

degT (v1)−1

degT (v1)

≥ 1. This leads us to P a1 (T ) ≥ 2a(γ−1)(n− γ)a.

2. If v0 ∈ Γ(T ), then v0 /∈ Γ(T ′). Thus, v0 /∈ V (T ′), then we have γ(T ′) = γ(T )− 1.

We would obtain a path of length at least d+1 in T if v1 were adjacent to a vertex w /∈ {v0, v2}
in T that is not a pendant vertex. v1 must be in every dominating set of size γ, (that means,
v0 /∈ Γ(T )), if it were adjacent to a pendant vertex w /∈ {v0, v2}. Therefore, the only neighbors
of v1 in T are v0 and v2. The following are true: degT ′(v1) = degT (v1)−1 = 1 and degT (v0) = 1.
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Then,

P a1 (T ) =
∏

v∈V (T )

(degT (v))a

=

 ∏
v 6=v0,v1

(degT (v))a

 (degT (v0))a(degT (v1))a

=

∏
v 6=v1

(degT ′(v))a

 (degT (v1)− 1)a
(degT (v1))a

(degT (v1)− 1)a
(degT (v0))a

=

∏
v 6=v1

(degT ′(v))a

 (degT ′(v1))a
(degT (v1))a

(degT (v1)− 1)a
(degT (v0))a

=

 ∏
v∈V (T ′)

(degT ′(v))a

( degT (v1)

(degT (v1)− 1)
degT (v0)

)a
= P a1 (T ′)

(
degT (v1)

(degT (v1)− 1)

)a
; because degT (v0) = 1.

From the hypothesis,

P a1 (T ) ≥ 2a(γ−1−1)(n− 1− (γ − 1))a
(

degT (v1)

(degT (v1)− 1)

)a
= 2a(γ−1−1)(n− γ)a

(
degT (v1)

(degT (v1)− 1)

)a
= 2a(γ−2)(n− γ)a

(
2

2− 1

)a
= 2a(γ−1)(n− γ)a.

This leads us to P a1 (T ) ≥ 2a(γ−1)(n− γ)a. �

3.3 Trees with a given maximum degree

The set of all trees of order n and maximum degree ∆ is represented by Tn,∆, where 1 ≤ ∆ ≤
n − 1. Only P2 and Pn have ∆ = 1 and ∆ = 2, respectively, whereas Sn is the only tree with
∆ = n− 1. Consequently, we will take into account trees with a maximum degree of ∆ ≥ 3.

Theorem 3.4. Let T ∈ Tn,∆ and 3 ≤ ∆ ≤ n− 1. Then for a > 0,

P a1 (T ) ≤ ∆a · 2a(n−∆−1) and P a2 (T ) ≥ ∆a∆ · 22a(n−∆−1).

The equality holds if and only if T ∈ T ∗.

Proof. Let T ′ be a tree with the largest P a1 (or the smallest P a2 ) index among trees with n
vertices and maximum degree ∆. We need to show by contradiction that T ′ ∈ T ∗. We claim
the following:

Claim 1. T ′ has no vertex v such that 2 < degT ′(v) < ∆.
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Assume that T ′ contains a vertex, say u, such that 3 ≤ degT ′(u) = p ≤ ∆ − 1. Let u be
the nearest vertex to a pendant vertex, say v, in T ′. Let u′ ∈ V (T ′) such that uu′ ∈ E(T ′),
but u′ is further from v in T ′ than u is. Let T ′′ = T ′ − uu′ + vu′. Clearly, T ′′ ∈ Tn,∆. From
Proposition 2.4,

P a1 (T ′) < P a1 (T ′′) and P a2 (T ′) > P a2 (T ′′),

for a > 0, which is a contradiction. Thus, Claim 1 is true.
Claim 2. T ′ has exactly one vertex with degree ∆.

Assume that T ′ contains two vertices, say u and v, such that degT ′(u) = degT ′(v) = p =
∆ > 2. Let NT ′(u) = {u1, u2, . . . , up}, and let w1, w2, . . . , ws be pendant vertices of T ′, where
s > p. Let T1 = T ′ − uu1 + w1u1. Since degT1

(v) = degT ′(v) = ∆ > 2, we have T1 ∈ Tn,∆.
From Proposition 2.4,

P a1 (T ′) < P a1 (T1) and P a2 (T ′) > P a2 (T1), a > 0.

Let T2 = T1−uu2 +w2u2. Since degT2
(v) = degT1

(v) = degT ′(v) = ∆ > 2, we have T2 ∈ Tn,∆.
From Proposition 2.4,

P a1 (T1) < P a1 (T2) and P a2 (T1) > P a2 (T2), a > 0.

Similarly, let T3 = T2−uu3 +w3u3. Since degT3
(v) = degT2

(v) = degT1
(v) = degT ′(v) = ∆ > 2,

we have T3 ∈ Tn,∆. By Proposition 2.4, we have

P a1 (T2) < P a1 (T3) and P a2 (T2) > P a2 (T3), a > 0.

Thus, using the same fashion as above, let Tk+1 = Tk−uuk+wkuk. Since degTk(v) = degT ′(v) =
∆ > 2, we have Tk ∈ Tn,∆ for 1 ≤ k ≤ p − 2. Then for 1 ≤ k ≤ p − 2 and a > 0, by
Proposition 2.4, we have

P a1 (Tk−1) < P a1 (Tk) and P a2 (Tk−1) > P a2 (Tk).

This approach gives us the following pattern in inequalities for a > 0:

P a1 (T ′) < P a1 (T1) < P a1 (T2) < · · · < P a1 (Tp−2),

P a2 (T ′) > P a2 (T1) > P a2 (T2) > · · · > P a2 (Tp−2).

This is a contradiction. Thus, Claim 2 is true.
Claim 3. T ′ has ∆ pendant vertices.

Since T ′ is a tree, by Proposition 2.5, Claim 3 is true. �

3.4 Unicyclic graphs with given maximum degree
The set of unicyclic graphs of order n with maximum degree ∆ is represented by Cn,∆, where
2 ≤ ∆ ≤ n − 1. The only unicyclic graphs with ∆ = 2 and ∆ = n − 1 are Cn and S+

n ,
respectively. Thus, unicyclic graphs with a maximum degree ∆ ≥ 3 will be examined.

Assume that U∗ is the set of unicyclic graphs that results from joining two pendant vertices
of T ∈ T ∗ with an edge. It is evident that the maximum degree ∆ of these unicyclic graphs
U∗ and trees T ∈ T ∗ is the same. Consequently, U∗ ⊆ Cn,∆, and D(U∗) = [∆, 2n−∆+1, 1∆−2]
is the degree sequence of U∗.

A unicyclic graph of order n is obtained when an edge is added between two vertices in a
tree of order n. Let G be a unicyclic graph with maximum degree ∆, meaning that G ∈ Cn,∆
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and let u, v ∈ V (G), so that degG(u) 6= ∆ and degG(v) 6= ∆. Let T ∈ Tn,∆. Assume that u and
v are vertices of the cycle in G, deg(u) ≥ 2 and deg(v) ≥ 2, respectively. Let T = G− uv. then
degG(x) = degT (x) for x ∈ V (G)\{u, v} but degG(u) = degT (u)+1 and degG(v) = degT (v)+1.
Thus,

P a1 (G) = P a1 (T )

(
deg(u) deg(v)

(deg(u)− 1)(deg(v)− 1)

)a
≤ ∆a2a(n−∆−1)22a = ∆a2a(n−∆+1)

= P a1 (U∗),

since t
t−1 = 1 + 1

t−1 ≤ 2 for all integers t ≥ 2. Also,

P a2 (G) = P a2 (T )

(
(deg(u))deg(u)(deg(v))deg(v)

(deg(u)− 1)(deg(u)−1)(deg(v)− 1)(deg(v)−1)

)a
≥ ∆a∆22a(n−∆−1)

(
(deg(u))deg(u)(deg(v))deg(v)

(deg(u)− 1)(deg(u)−1)(deg(v)− 1)(deg(v)−1)

)a
= ∆a∆22a(n−∆−1)

(
(deg(u))deg(u)

(deg(u)− 1)(deg(u)−1)

)a(
(deg(v))deg(v)

(deg(v)− 1)(deg(v)−1)

)a
≥ ∆a∆22a(n−∆−1)22a22a

= ∆a∆22a(n−∆+1)

= P a2 (U∗),

since tt ≥ 4(t− 1)t−1 for all integers t ≥ 2.
Thus, the extremal graph G ∈ Cn,∆ with maximum P a1 (minimum P a2 ) is U∗. Conversely,

if G is obtained by connecting two vertices u and v of a starlike tree T with maximum degree
∆, i.e., let G = T + uv where either degT (u) = 1 and degT (v) = 2, or degT (u) = degT (v) = 2.
Let G1 be obtained by connecting vertices u and v of a starlike tree T with maximum degree
∆ such that degT (u) = 1 and degT (v) = 2. Then the degree sequence of G1 is D(G1) =
[∆, 3, 2n−∆−1, 1∆−1] and

P a1 (G1) = ∆a3a2a(n−∆−1) and P a2 (G1) = ∆a∆33a22a(n−∆−1). (3)

Let G2 be obtained by connecting vertices u and v of a starlike tree T with maximum de-
gree ∆ such that degT (u) = degT (v) = 2. Then the degree sequence of G2 is D(G2) =
[∆, 32, 2n−∆−3, 1∆] and

P a1 (G2) = ∆a32a2a(n−∆−3) and P a2 (G2) = ∆a∆36a22a(n−∆−3). (4)

Next, we establish the relation between the results obtained in Equations (3) and (4).

P a1 (U∗)

P a1 (G1)
=

2a(n−∆+1)

3a2a(n−∆−1)
=

22a

3a
=

(
4

3

)a
> 1,

P a1 (G1)

P a1 (G2)
=

3a2a(n−∆−1)

32a2a(n−∆−3)
=

22a

3a
=

(
4

3

)a
> 1.

Thus, we have
P a1 (U∗) > P a1 (G1) > P a1 (G2).
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and

P a2 (U∗)

P a2 (G1)
=

22a(n−∆+1)

33a22a(n−∆−1)
=

24a

33a
=

(
16

27

)a
< 1,

P a2 (G1)

P a2 (G2)
=

33a22a(n−∆−1)

36a22a(n−∆−3)
=

24a

33a
=

(
16

27

)a
< 1.

Thus, we have
P a2 (U∗) < P a2 (G1) < P a2 (G2).

That is, U∗ has the maximum P a1 (and minimum P a2 ). So, Theorem 3.5 follows.

Theorem 3.5. Let G ∈ Cn,∆ and 3 ≤ ∆ ≤ n− 1. For a > 0,

P a1 (G) ≤ ∆a2a(n−∆+1) and P a2 (G) ≥ ∆a∆22a(n−∆+1),

with equality if and only if G ∈ U∗.
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