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Abstract

We all know that parabolic equations with non-classical
boundary conditions and Stefan’s problem have become very
popular in recent years due to their many applications in more
basic and applied science problems. Also, differential equations
with integral conditions have found wide applications in solv-
ing chemistry and physics problems. Many problems that ap-
pear in heat transfer can be reduced to non-classical problems
with integral conditions. In this document, we first mention
the application of Stefan’s one-phase problems, including the
non-classical thermal equation and the integral boundary con-
dition, in problems related to chemistry. Then we examine a
numerical technique to solve it and prove the convergence of the
method. Finally, numerical examples are presented to demon-
strate the effectiveness of the method for solving linear and non-
linear diffusion-response equations with these non-classical con-
ditions.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction

The Stefan problem in chemistry typically refers to a class of problems involving phase changes,
such as the melting of ice or the solidification of a liquid. These problems are named after Josef
Stefan, an Austrian physicist, and they generally involve solving the heat equation with a mov-
ing boundary. The Stefan problem has several important applications in chemistry and related
fields, particularly in processes involving phase transitions. Here are some key applications:
1. Crystal Growth: In the manufacturing of semiconductors and other crystalline materials,
controlling the rate and uniformity of crystal growth is crucial. The moving border among
the liquid and solid phases of the material being crystallized can be modeled using the Stefan
problem to predict how temperature gradients and cooling rates affect the growth.
2. Freezing and Melting Processes: Understanding the freezing and melting behavior of
various substances, such as metals, polymers, and food products. Stefan problem used to model
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how the interface between solid and liquid phases moves over time, helping to optimize pro-
cesses like casting, welding, and the preservation of perishable goods.
3. Alloy Solidification: In metallurgy, controlling the solidification of alloys to achieve the
desired properties in the final product. Stefan problem: models the solidification front and
predicts the formation of microstructures within the alloy, aiding in the design of processes like
continuous casting.
4. Ice Formation: In atmospheric chemistry and environmental science, predicting ice forma-
tion in clouds, on aircraft surfaces, or in sea ice. Stefan problem helps to model how ice forms
and grows under varying environmental conditions, contributing to better weather prediction
and climate models.
5. Pharmaceuticals: In the development of freeze-drying processes for pharmaceuticals. Ste-
fan problem: models the sublimation front during the freeze-drying process, helping to optimize
conditions for the stability and effectiveness of the final product.
6. Geological Processes: Understanding the formation of geological features such as per-
mafrost and lava solidification. Stefan problem: models the heat exchange and phase change
in geological stuffs, providing insights into the timescales and conditions under which these
processes occur.
Each of these applications benefits from the Stefan problem’s ability to model the dynamic
nature of phase change boundaries, leading to improved control and optimization of industrial
and natural processes.

Phase transitions are found in several related processes in physics, chemistry, natural sci-
ences, and engineering: almost every industrial product involves solidification at some stage.
Chemical examples include metal casting, steel annealing, crystal growth, thermal welding, soil
freezing, surface water freezing and thawing, food preservation, etc. An example is the ice
melting problem, which was first treated by Stefan [1] and has since been widely called Stefan
problems [2–7]. Stefan’s simple one-phase fuzzy model is reviewed in [8]. Topics related to
one-phase Stefan problems, including the non-classical heat equation and integral boundary
conditions, are discussed in [9–11], and the numerical methods used in [12–14]. We are looking
for a free border problem in such issues.

Consider the following problem:

vt − vxx = −F (vx(0, t)), γ(t) ≥ x ≥ 0, T ≥ t ≥ 0, (1)

v(0, t) + αvx(0, t) = f1(t), T ≥ t ≥ 0, (2)

v(γ(t), t) = 0, T ≥ t ≥ 0, (3)

v(x, 0) = h1(x) ≥ 0, b ≥ t ≥ 0, (4)

vx(γ(t), t) = −γ̇(t), T ≥ t ≥ 0 (5)

γ(0) = b, b > 0. (6)

In which α ∈ <+, F ∈ C1(<+), f1 ∈ C0(<+), h1 ∈ C1[0, b], and h1(x) > 0, x > 0, h1(b) = 0
are continuous functions. The function F is called the control function. The diffusion equation
with integral conditions has found wide applications in science, especially chemistry and ther-
moelasticity [12]. In this article, we consider the following problem that involves the integral
condition.

Vt − Vxx = −F (Vx(0, t)), Γ(t) ≥ x ≥ 0, T ≥ t ≥ 0, (7)

V (0, t) + αVx(0, t) =

∫ Γ(t)

0

φ(x, t)V (x, t)dx+ g(t), T ≥ t ≥ 0, (8)
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V (Γ(t), t) = 0, T ≥ t ≥ 0, (9)

V (x, 0) = f(x) ≥ 0, b ≥ t ≥ 0, (10)

Vx(Γ(t), t) = −Γ̇(t), T ≥ t ≥ 0, (11)

Γ(0) = b, b > 0. (12)

In which α ∈ <+, F ∈ C1(<+), g ∈ C0(<+), f1 ∈ C1[0, b], and f1(b) = 0.
The general structure of the article is as follows. First, the explicit numerical solution based
on finite differences for (7-12) is discussed. In the second step, the convergence of the method
is checked, and finally, the numerical results are presented as examples.

2 Numerical review and convergence
In the continuation of the discussion, the number of intervals between the fixed boundary x = 0
and the moving boundary x = Γ(t) will be considered equal to N . The moving boundary
is placed in the Nth grid. By tracking particular grid lines, as opposed to constant x, and
differentiating with respect to time t, the following expression was obtained for ith grid point,[

∂V

∂t

]
i

=

[
∂V

∂x

]
t

[
dx

dt

]
i

+

[
∂V

∂t

]
x

, (13)

and was also assumed that the node xi is moved by the expression

dxi
dt

=
xi

Γ(t)
× dΓ

dt
. (14)

In which the suffices t, i, and x are to be kept constant during the differentiation processes
and omitted for clarity below. Thus, in the dimensionless model problem, the heat conduction
Equation (7) takes the form

∂V

∂t
=
∂2V

∂x2
+
xiΓ̇(t)

Γ(t)

∂V

∂x
− F (V (0, t)), 0 ≤ x ≤ Γ(t), 0 ≤ t ≤ T. (15)

One explicit finite difference representation of Equation (15) is

vi,j+1 = rvi−1,j +
(

1− 2r− kxiγ̇j
hγj

)
vi,j +

(
r +

kxiγ̇j
hγj

)
vi+1,j

−kF (v0,j), i = 1, 2, . . . , N − 1, j = 1, 2, . . . ,
(16)

with a truncation error of O(k) + O(h2). To approximate the integral on the second side of
Equation (8), we use the composite Simpson rule,∫ Γ(t)

0
ϕ(x, t)v(x, t)dx ≈

h
3 [v0,jϕ0,j + 4

∑n
l=1 v2l−1,jϕ2l−1,j + 2

∑n
l=1 v2l−2,jϕ2l−2,j + v2n,jϕ2n,j ],

j = 1, 2, . . . , N = 2n.

(17)

From the boundary condition (9), vN,j = 0, it can be concluded that vN,jϕN,j = 0. So for the
boundary condition (9) at x = 0, using the central difference, we can express:

v1,j + α
v2,j−v0,j

2h = h
3 [v0,jϕ0,j + 4

∑n
l=1 v2l−1,jϕ2l−1,j

+2
∑n
l=1 v2l−2,jϕ2l−2,j ] + g(tj), j = 1, 2, . . . , N = 2k.

(18)
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Note: In this article, the following approximations are used:
vi,j ≈ V (xi, tj),
γj ≈ Γ(tj), tj = jk ,
k = T/M ,
xi = ih, (h ≈ ∆x),
r = k/h2.
For Stefan’s condition (11) , we can state

γj+1 = γj −
k

2h
(3vN,j − 4vN−1,j + vN−2,j) , j = 1, 2, · · · , (19)

and for the boundary conditions (9), (10) and(12) we can state,

vi,j = 0, i = N, j = 1, 2 · · · , vi,0 = fi, i = 1, 2, · · · , γ0 = b. (20)

3 Convergence and stability
One of the most important discussions of numerical methods is to prove the convergence of
that method. Therefore, first, we check the convergence of the method used in this paper. By
choosing the mesh points, vi,j = Vi,j−ei,j , and using the Taylor expansion, we can obtain from
(16).

ei,j+1 = rei−1,j +
(

1− 2r− kxiγ̇j
hγj

)
ei,j +

(
r +

kxiγ̇j
hγj

)
ei+1,j − ke0,jF

′(Θ)

+k[
(
∂V
∂t

)
(xi, tj + Θ1k)−

(
∂2V
∂x2

)
(xi + Θ2h, tj)

−xiγ̇j
γj

(
∂V
∂x

)
(xi + Θ3h, tj) + F (V0,j)].

(21)

In which, −1 < Θ2 < 1, 0 < Θ1,Θ3 < 1 , and Θ is between V0,j−e0,j and V0,j . If k <
h2γj

2γj+hxiγ̇j
,

for each step h,k, i = 1, ..., N − 1, j = 0, 1, ..., we can write

|ei,j+1| ≤ r|ei−1,j |+
[
1− 2r− kxiγ̇j

hγj

]
|ei,j |+

[
r +

kxiγ̇j
hγj

]
|ei+1,j |

+kM1 + kN1.
(22)

Suppose that the largest error value |ei,j | during the time row j is ERj . Also, the largest
value of brackets in (22) for all values of i, j and h,k is M1, and the largest absolute value of
|e0,jF

′(Θ)| is N1 . So

ERj+1 ≤ ERj + k(M1 +N1)
≤ (ERj−1 + k(M1 +N1)) + k(M1 +N1)

= ERj−1 + 2k(M1 +N1)
≤ · · · ≤ ER0 + jk(M1 +N1).

(23)

It is obtained from (23), ERj ≤ ER0 + jk(M1 +N1). Because the initial values of v and V are
equal, therefore ER0 = 0. When h −→ 0, k = rh2 is also zero and M1 tends to(

∂V
∂t −

∂2V
∂x2 − xiΓ̇j

Γj

∂V
∂x + F (V (0, t))

)
i,j
. (24)

We know that V , Γ is a solution to Equation (15), and M1 is bounded, so ERj is zero. From
|Vi,j − vi,j | ≤ ERj , j = 0, 1, ... It can be concluded that when k <

h2γj
2γj+hxiγ̇j

, i = 1, ...N − 1, j =
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0, 1, ... as h −→ 0, v converges to V .

To prove the convergence γj to Γj using the relation (19) and assumption γj+1 = Γj+1 − e′j+1,
γj = Γj − e′j , we have

Γj+1 − e′j+1 = Γj − e′j − k
2h (3VN,j − 3eN,j − 4VN−1,j + 4eN−1,j + VN−2,j − eN−2,j) ,

j = 0, 1, ...

hence

e′j+1 = e′j + Γj+1 − Γj − k
2h (3VN,j − 3eN,j − 4VN−1,j + 4eN−1,j + VN−2,j − eN−2,j) ,

j = 0, 1, ....
(25)

Using the Taylor expansion, we obtain:

e′j+1 = e′j + kΓ′(tj + Θ5k)− 3k
2heN,j + 2k

h eN−1,j − k
2heN−2,j

− k
2h

(
3VN,j − 4VN,j + 4h

(
∂V
∂x

)
(xN −Θ6h, tj) + VN,j − 2h

(
∂V
∂x

)
(xN −Θ7h, tj)

)
.

(26)

In relation (26), since 0 < Θih < h, i = 6, 7, so for sufficiently small step size h, Θ6
∼= Θ7 and

we can write

e′j+1 = e′j + k
[
Γ′(tj + Θ5k) +

(
∂V
∂x

)
(xN −Θ6h, tj)

]
− 3k

2heN,j + 2k
h eN−1,j − k

2heN−2,j ,

then ∣∣e′j+1

∣∣ ≤ ∣∣e′j∣∣+ k
∣∣[Γ′(tj + Θ5k) +

(
∂V
∂x

)
(xN −Θ6h, tj)

]∣∣+ 3k
2h |eN,j |

+ 2k
h |eN−1,j |+ k

2h |eN−2,j | .
(27)

Assuming Π is the largest value inside the bracket in (27), then∣∣e′j+1

∣∣ ≤ ∣∣e′j∣∣+ kΠ +
(

3k
2h + 2k

h + k
h

)
Ej =

∣∣e′j∣∣+ kΠ +
(

4k
h

)
Ej

≤
∣∣e′j−1

∣∣+ 2kΠ +
(

4k
h

)
(Ej−1)

≤ · · · ≤ |e′0|+ jkΠ +
(

4k
h

)
ER0,

(28)

Since the initial values of (γ, v) and (Γ, V ) are the same, so e′0 = 0 and ER0 =0.
When k → 0 then Π will approach

(
Γ̇(t) + ∂V

∂x |x=Γ(t)

)
j
. Since (Γ, V ) is a solution to problem

(7-12), when h → 0, k → 0 then Π → 0 therefore |e′j+1| → 0. By |Γj+1 − γj+1| ≤ e′j+1, so γ
converges to Γ.

3.1 Stability
We investigate the stability of the difference equation (16) in the case F (v) = v by Von Neu-
mann’s method. We consider the following difference equation:

vp,q+1 = rvp−1,q +
(

1− 2r− kxpγ̇q
hγq

)
vp,q +

(
r +

kxpγ̇j
hγq

)
vp+1,q

−kv0,q,
(29)

Substitution of vp,q = eiβnphξq into the difference equation (29) shows that

eiβnphξq+1 = reiβn(p−1)hξq +
(

1− 2r− kxpγ̇q
hγq

)
eiβnphξq

+
(
r +

kxpγ̇j
hγq

)
eiβn(p+1)hξq − kξq,

(30)
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where r = k/h2, βn = nπ
Nh and Nh = b. Devision by eiβnphξq leads to

ξ = re−iβnh +
(

1− 2r− kxpγ̇q
hγq

)
+
(
r +

kxpγ̇j
hγq

)
eiβnh

−ke−iβnph.
(31)

Hence

|ξ| ≤
∣∣∣re−iβnh +

(
1− 2r− kxpγ̇q

hγq

)
+
(
r +

kxpγ̇j
hγq

)
eiβnh

∣∣∣
+
∣∣ke−iβnph

∣∣ , (32)

therefore

|ξ| ≤ r +
∣∣∣1− 2r− kxpγ̇q

hγq

∣∣∣+ r +
kxpγ̇j
hγq

k, p = 1, 2, . . . , N − 1, q = 1, 2, . . . , (33)

satisfies the Von Neumann condition for stability if k ≤ (1− 2r)
hγq
xpγ̇q

.

4 Numerical results
Finally, two examples are considered to show the closeness of the solutions obtained from the
method mentioned in the article to the exact solutions. All calculations were performed on a
AMD A10 2.0 GHz CPU and using Matlab software version 2020b.

Example 4.1. Consider the one-phase, diffusion-reaction and non-classical heat equation fol-
lowing

Vt − Vxx = exp(2t) + 1, γ(t) ≥ x ≥ 0, T ≥ t ≥ 0,

V (0, t) + 0.5Vx(0, t) =
∫ Γ(t)

0
2exp(−t)V (x, t)dx− 1

6exp(2t), T ≥ t ≥ 0,
V (Γ(t), t) = 0, T ≥ t ≥ 0,

Vx(Γ(t), t) = −Γ̇(t), T ≥ t ≥ 0,
V (x, 0) = 1

2 (1− x2), γ(t) ≥ x ≥ 0,
Γ(0) = 1.

The exact solution is
V (x, t) =

1

2
(exp(2t)− x2), Γ(t) = exp(t).

(Discrete form of Example 4.1) The explicit finite difference of Example 4.1 is as follows:

−rvi−1,j+1 + (2− 2r)vi,j+1 − rvi+1,j+1 =

(
r − kxiγ̇j

hγj

)
vi−1,j + (2− 2r)vi,j

+

(
r +

kxiγ̇j
hγj

)
vi+1,j + 2k(exp(2t) + 1), j = 0, 1, . . . , i = 2, . . . , N − 1.

Tables 1 and 2 display, respectively, the numerical results for the temperature distribution and
the interface movement at a final time of tf = 0.5. It is observed that all the results are in good
agreement with the exact solution, and exhibit the expected convergence as the mesh size is
refined. The interface predictions shown in Table 3 are also in good agreement with the exact
interface location at some internal points between the initial time, t0 = 0 and the final time,
tf = 0.5. For example, at tf = 0.5 the percentage error decreases from 0.2 × 10−2%(N = 40)
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to 0.8 × 10−3%(N = 320). Figure 1 compares the exact temperature distribution with the
numerical approximation. Figure 2 illustrates the absolute error graph of this example. Figure 3
compares the numerical moving boundary with the exact moving boundary.

Table 1: Variable space grid: Values of the temperature distribution as predicted by the nu-
merical (explicit finite-difference) and exact solutions at a final time of tf = 0.5.

x/s Numerical solution Exact solution
N = 40 N = 80 N = 160 N = 320

0.0 1.3640 1.3616 1.3604 1.3598 1.3591
0.1 1.3479 1.3468 1.3462 1.3459 1.3456
0.2 1.3053 1.3050 1.3049 1.3048 1.3048
0.3 1.2360 1.2364 1.2366 1.2367 1.2369
0.4 1.1399 1.1408 1.1412 1.1415 1.1417
0.5 1.0170 1.0182 1.0188 1.0191 1.0195
0.6 0.8673 0.8686 0.8692 0.8695 0.8700
0.7 0.6907 0.6919 0.6925 0.6928 0.6934
0.8 0.4873 0.4883 0.4888 0.4890 0.4896
0.9 0.2570 0.2576 0.2579 0.2581 0.2586
1.0 0 0 0 0 0

Table 2: Variable space grid: Values of the location and speed of the moving interface as
predicted by the numerical (explicit finite-difference) and exact solutions at a final time of
tf = 0.5.

N Numerical solution
γj Error γ̇j Error

40 1.6467 0.0020 1.6423 0.0064
80 1.6477 0.0010 1.6455 0.0032
160 1.6482 0.0005 1.6471 0.0016
320 1.6485 0.0003 1.6479 0.0008

Table 3: Location of the moving boundary.

t Numerical solution Exact values
N = 40 N = 80 N = 160 N = 320 of γ(tj)

0.1 1.1050 1.1051 1.1051 1.1051 1.1052
0.2 1.2209 1.2211 1.2213 1.2213 1.2214
0.3 1.3489 1.3494 1.3496 1.3497 1.3499
0.4 1.4904 1.4911 1.4915 1.4916 1.4918
0.5 1.6467 1.6477 1.6482 1.6485 1.6487
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Figure 1: Comparison of the exact temperature distribution of Example 4.1 with the numerical
approximation. The right pictures are the exact solution and left pictures are the numerical
solution.

Figure 2: Absolute error graph of Example 4.1.
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Figure 3: Comparison of the numerical moving boundary with the exact moving boundary of
Example 4.1.

Example 4.2.



Vt − Vxx = 1, γ(t) ≥ x ≥ 0, 1/2 ≥ t ≥ 0,

V (0, t) + αVx(0, t) =
∫ Γ(t)

0
ψ(x, t)V (x, t)dx+ g(t), 1/2 ≥ t ≥ 0,

V (Γ(t), t) = 0, 1/2 ≥ t ≥ 0,

Vx(Γ(t), t) = −Γ̇(t), 1/2 ≥ t ≥ 0,
V (x, 0) = 1/2− x, γ(t) ≥ x ≥ 0.
Γ(0) = 1/2.

In which ψ(x, t) = x, g(t) = t − 1
6 (t + 1/2)3, α = 1/2, and the exact solution is given by

V (x, t) = −x+ t+ 1/2,Γ(t) = t+ 1/2.
Tables 4 and 5 display, respectively, the numerical results for the temperature distribution and
the interface movement at a final time of tf = 0.5. It is observed that all the results are in
good agreement with the exact solution, and exhibit the expected convergence as the mesh
size is refined. The interface predictions shown in Table 6 are also in good agreement with
the exact interface location at some internal points between the initial time, t0 = 0 and the
final time, tf = 0.5. Figure 4 compares the exact temperature distribution with the numerical
approximation. Figure 5 compares the numerical moving boundary with the exact moving
boundary. Figure 6 illustrates the absolute error graph of this example.
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Table 4: Variable space grid: Values of the location and speed of the moving interface as
predicted by the numerical (explicit finite-difference) and exact solutions at a final time of
tf = 0.5.

x/s Numerical solution Exact solution(Γ)
N = 10 N = 20 N = 40 N = 80

0.0 1.000000000008199 1.000000000008275 1.000000000008302 1.000000000008254 1.000000000000000
0.1 0.900000000006754 0.900000000006816 0.900000000006835 0.900000000006796 0.900000499999672
0.2 0.800000000005511 0.800000000005563 0.800000000005580 0.800000000005547 0.800000999999345
0.3 0.700000000004427 0.700000000004478 0.700000000004490 0.700000000004462 0.700001499999017
0.4 0.600000000003464 0.600000000003516 0.600000000003530 0.600000000003507 0.600001999998690
0.5 0.500000000002589 0.500000000002649 0.500000000002665 0.500000000002649 0.500002499998362
0.6 0.400000000001882 0.400000000001927 0.400000000001931 0.400000000001917 0.400002999998035
0.7 0.300000000001308 0.300000000001345 0.300000000001341 0.300000000001329 0.300003499997707
0.8 0.200000000000842 0.200000000000864 0.200000000000858 0.200000000000849 0.200003999997380
0.9 0.100000000000412 0.100000000000420 0.100000000000417 0.100000000000413 0.100004499997052
1.0 0 0 0 0 0

Table 5: Variable space grid: Values of the location and speed of the moving interface as
predicted by the numerical (explicit finite-difference) and exact solutions at a final time of
tf = 0.5.

N Numerical solution
γj Error γ̇j Error

10 1.000000000000500 0.000000000000500 1.000000000000546 0.000000000000546
20 1.000000000000500 0.000000000000500 1.000000000000502 0.000000000000502
40 1.000000000000500 0.000000000000500 1.000000000000514 0.000000000000514
80 1.000000000000500 0.000000000000500 1.000000000000514 0.000000000000514

Table 6: Location of the moving boundary.

t Numerical solution Exact values
N = 40 N = 80 N = 160 N = 320 of γ(tj)

0.1 0.600000000000655 0.600000000000655 0.600000000000655 0.600000000000655 0.600000000000000
0.2 0.700000000001310 0.700000000001310 0.700000000001310 0.700000000001310 0.700000000000000
0.3 0.800000000001965 0.800000000001965 0.800000000001965 0.800000000001965 0.800000000000000
0.4 0.900000000002620 0.900000000002620 0.900000000002620 0.900000000002620 0.900000000000000
0.5 1.000000000003276 1.000000000003276 1.000000000003276 1.000000000003276 1.000000000000000
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Figure 4: Comparison of the exact temperature distribution of Example 4.2 with the numerical
approximation. The right pictures show the exact solution and left pictures show the numerical
solution.
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Figure 5: Comparison of the numerical moving boundary with the exact moving boundary of
Example 4.2.
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Figure 6: Absolute error graph for Example 4.2.

5 Concluding remarks

This paper has presented a detailed examination of numerical method applied to one-phase
Stefan problems, including the non-classical heat equation and integral boundary conditions.
The results underscore the importance of choosing suitable numerical schemes to accurately
model phase change phenomena, which is critical for applications in fields such as materials sci-
ence, cryogenics, and geophysics. Our study demonstrates the effectiveness of finite difference
in capturing the dynamic behavior of the moving boundary characteristic of the Stefan problem.
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