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Abstract

Let G = (V (G), E(G)) be a graph. The harmonic-arithmetic
index of G is defined as HA(G) =

∑
uv∈E(G)

4dG(u)dG(v)
(dG(u)+dG(v))2 ,

where dG(u) is the degree of a vertex u ∈ V (G). In this paper,
we consider the upper and lower bounds of the harmonic-
arithmetic index of unicyclic graphs with a fixed order.
Furthermore, the graphs attaining the extremal values are also
characterised.

c© 2025 University of Kashan Press. All rights reserved.

1 Introduction

Let G = (V (G), E(G)) be a simple connected graph, where V (G) and E(G) are its vertex set
and edge set, respectively. G is a unicyclic graph if it contains exactly one cycle. In this paper,
we only consider unicyclic graphs of order n(n > 3).

For two simple connected graphs F1 = (V1, E1) and F2 = (V2, E2), if V1 ⊆ V2 and E1 ⊆ E2,
then F1 is a subgraph of F2, written as F1 ⊆ F2. Furthermore, if F1 ⊆ F2 and E1 contains all
the edges uv ∈ E2 with u, v ∈ V1, then F1 is an induced graph of F2, written as F1 = F2[V1].

For a vertex u ∈ V (G), we define NG(u) = {v ∈ V (G)|uv ∈ E(G)}, and dG(u) = |NG(u)|
is the degree of u. In a unicyclic graph G, if the vertex u (edge e) lies on the cycle of G, then
we call it a cycle vertex (a cycle edge). For a cycle vertex u, if dG(u) is no less than the degree
of any other cycle vertices, then it is called a maximum degree cycle vertex. If dG(u) is no
less than the degree of two cycle vertices adjacent to itself, then it is called a local maximum
degree cycle vertex. Similarly, we define (local) minimum degree cycle vertex. Let T1 be a
component of G − u, where u is a cycle vertex. If T1 contains cycle edges of G, we define
Tu = T [V (G)− V (T1)], then Tu is a tree rooted at u.

Identifying non-adjacent vertices u and v of a graph G is to replace these two vertices by a
single vertex, which is incident with all the edges that are incident with either u or v in G. For
more basic definitions about graph theory, one may refer to [1].
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If the output of a function based on the graphs is same under graph isomorphisms, then
we call this function a graph invariant. Graph invariants that only take numerical qualities are
usually called topological indices, which are heavily employed in chemical graph theory. They
can reflect biological and physico-chemical properties of organic compounds on the molecular
graphs. Some applications of topological indices in predicting particular properties of com-
pounds are shown in [2].

Randić index (also known as connectivity index), defined as R(G) =
∑

uv∈E(G)
1√

dG(u)dG(v)
,

was introduced by Randić [3]. It is one of the most frequently investigated and widely applied
topological indices. In fact, different from any other topological indices, Randić index is the
first topological index that has being designed for specific goals. The idea behind it is to use
available information on some molecular properties for their construction. For example, the
relative values of the boiling points of smaller alkanes are used in construction of Randić index.
Zhang and Wu [4] found a lower bound of Randić index of line graphs of trees.

A well-known modification of Randić index is geometric-arithmetic index first introduced by

Vukičević and Furtula [5] and it is defined as GA(G) =
∑

uv∈E(G)

2
√

dG(u)dG(v)

dG(u)+dG(v) . The summand
of GA index is the ratio between the geometric and arithmetic means of dG(u) and dG(v).
The upper and lower bounds of simple graphs, simple connected graphs, trees and molecular
trees are all presented in [5], respectively. Besides, Vukičević and Furtula showed that the
prediction ability of GA index for physico-chemical properties such as entropy, enthalpy of
vaporization, and acentric factor, is at least 2.5% better than that of Randić index. Moon and
Park [6] established that the maximum and minimum values of GA index of unicyclic graphs
are attained by Cn and S∗n, respectively, where S∗n is obtained by attaching n−3 pendant edges
to a single vertex of C3. If we replace each summand by its reverse, we can get a new index
called arithmetic-geometric index [7]: AG(G) =

∑
uv∈E(G)

dG(u)+dG(v)

2
√

dG(u)dG(v)
. Vukićević et al. [8]

proved that the extremal situations of AG index of unicyclic graphs are exactly opposite to
that of GA index of unicyclic graphs. For more recent papers about GA index and AG index,
one may refer to [9–19].

Harmonic-arithmetic index is defined in same way by taking the ratio between harmonic and
arithmetic means of dG(u) and dG(v) into consideration, whereHA(G) =

∑
uv∈E(G)

4dG(u)dG(v)
(dG(u)+dG(v))2 .

Albalahi et al. [20] determined the upper and lower bounds of HA index of trees and molecular
trees. The HA index of molecular trees with a fixed-order and a given number of leaves was
studied in [21]. In [22], Albalahi et al. reported a lower bound on the HA index for molecular
graphs in terms of graphs’ order, size and maximum degree. Some inequalities about HA index
was derived in [23].

Since the extremal situations of GA and AG index over unicyclic graphs are already known,
we intend to investigate the extremal values ofHA index of unicyclic graphs and characterize the
corresponding extremal graphs. It would be interesting for others to investigate the application
of HA index in predicting certain properties of chemical compounds.

2 Bounds for harmonic-arithmetic index of unicyclic graphs

Consider an arbitrary edge e = uv ∈ E(G) such that dG(u) ≥ dG(v), we define wG(e) =
4dG(u)dG(v)

(dG(u)+dG(v))2 as the weight of edge e. Let rG(e) = dG(u)
dG(v) and h(x) = 4x

(x+1)2
, where h(x) is

strictly decreasing for x ≥ 1. Then wG(e) = h(dG(u)
dG(v) ) = h(rG(e)). It is easy to see that if rG(e)

is increased, then wG(e) or the weight of edge e will be subsequently decreased.
Since 1 ≤ rG(e) ≤ n − 1, then 4(n−1)

n2 ≤ wG(e) ≤ 1. It is distinct that the upper bound n
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of HA index of G is only obtained by the cycle Cn. By the way, it is clear that n and Cn are
also the maximum value and the corresponding extremal graph of molecular unicyclic graphs,
respectively. In the following part of this section, we mainly study the lower bound of HA
index of unicyclic graphs.

When n = 3, 4, 5, we can list all the possible graphs directly and compare their values of
HA index, respectively. The graphs which obtain the lower bound of HA index are shown in
Figure 1, respectively. Hence, next we let n ≥ 6.

Figure 1: the extremal unicyclic graphs for n = 3, 4, 5.

Proposition 2.1. Let G be a unicyclic graph of order n with the minimum value of HA index.
If u is a local maximum degree cycle vertex of G, then Tu is a star with center u.

Proof. When dG(u) = 2 or dG(u) = 3, Tu is a star with center u. Next we let dG(u) > 4.
Suppose that Tu is not a star with center u. We replace Tu by a star of the same set of vertices,
with center u, and define this new graph as G

′
(see Figure 2).

Figure 2: G −→ G
′
.

For each edge e ∈ EG(Tu), it is replaced by appropriate pendant edge e
′
under this transfor-

mation. Then

rG(e) <
|EG(Tu)|+ 2

1
=
dG′ (u)

1
= rG′ (e

′
).

So wG(e) > wG′ (e
′
).

Suppose that u1 and u2 are two cycle vertices adjacent to u in G. The degree of u1 and u2
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remain unchanged under this transformation and dG(u) < dG′ (u), hence

dG(u)

dG(ui)
<

dG′ (u)

dG′ (ui)
for i = 1, 2.

Then wG(uui) > wG′ (uui) for i = 1, 2.
The weight of other edges of G remain unchanged under this transformation. Hence, HA(G) >
HA(G

′
). This is a contradiction to the fact that G has minimum value of HA index. �

Proposition 2.2. Let G be a unicyclic graph of order n. u and v are its local maximum degree
cycle vertex and local minimum degree cycle vertex, respectively. dG(u) ≥ 3, dG(v) ≥ 3 and
Tu is a star with center u. If G∗ is obtained by replacing each edge of Tv by a pendant edge
incident with u(see Figure 3), then HA(G∗) < HA(G).

Figure 3: G −→ G∗.

Proof. For each edge e1 ∈ EG(Tv), it is replaced by appropriate pendant edge e
′

1 under this
transformation. So we have

rG(e1) ≤
|EG(Tv)|+ 2

1
<
dG∗(u)

1
= rG∗(e

′

1).

Thus wG(e1) > wG∗(e
′

1).
For each pendant edge e2 incident with u in G, we have

rG(e2) =
dG(u)

1
<
dG∗(u)

1
= rG∗(e2).

Then wG(e2) > wG∗(e2).
Suppose that v1 and v2 are two cycle vertices adjacent to u in G. If vi = v for some i = 1, 2,
then dG(u) < dG∗(u) and dG(vi) ≥ dG∗(vi). If vi 6= v for any i = 1, 2, then dG(u) < dG∗(u) and
dG(vi) = dG∗(vi). In both cases, rG(uvi) < rG∗(uvi), then wG(uvi) > wG∗(uvi) for i = 1, 2.
For another cycle edge v3v4 in G with v3, v4 6= u , we consider two cases.
If v3, v4 6= v, the degree of v3 and v4 remain unchanged under this transformation. Then
wG(v3v4) = wG∗(v3v4).
If vi = v for i = 3 or 4, for example v3 = v, we have rG(v3v4) =

dG(v4)
dG(v3)

≤ dG(v4)
3 < dG(v4)

2 =
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rG∗(v3v4). Then wG(v3v4) > wG∗(v3v4).
The weight of other edges of G remain unchanged. Hence, HA(G∗) < HA(G). �

Let x, y be two non-adjacent cycle vertices, and let e be a cycle edge of G. We write (x, y)-
arc containing the edge e as xey. Then the xey-transformation is defined as follows:
(i) For every cycle vertex z on xey, replace each edge of Tz by a pendant edge incident with y.
(ii) Let x1 be a cycle vertex adjacent to x on xey. For every cycle edge on xey, except for xx1,
replace it by a pendant edge incident with y.
(iii) identify x1 and y, and we still use y to name this new vertex.
We denote by Gxey the new graph obtained by above transformation.

Proposition 2.3. Let G be a unicyclic graph of order n. u is a local maximum degree cycle
vertex of G and Tu is a star with center u. If e is an arbitrary cycle edge and v is a cycle vertex
which is not adjacent to u and has degree two, then HA(Gveu) < HA(G)(see Figure 4).

Figure 4: G −→ Gveu.

Proof. Let a, b be two cycle vertices, which are adjacent to v, and va lies on the veu. Let w be
a cycle vertex lying on the veu. For each edge e1 ∈ Tw, it is replaced by appropriate pendant
edge e

′

1 under this transformation, then we have

rG(e1) ≤
|EG(Tw)|+ 2

1
<
dGveu

(u)

1
= rGveu

(e
′

1).

Thus wG(e1) > wGveu
(e
′

1).
For each cycle edge e2 on the veu except for va, it is replaced by appropriate pendant edge e

′

2.
Suppose that e2 = x1x2 such that dG(x2) ≥ dG(x1), we have

rG(e2) =
dG(x2)

dG(x1)
<
dGveu

(u)

1
= rGveu

(e
′

2).

Then wG(e2) > wGveu
(e
′

2).
For edge va, we have

rG(va) =
dG(a)

2
<
dGveu

(u)

2
= rGveu(vu).
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Then wG(va) > wGveu(vu).
For the edge e3 which is incident with u in G and does not lie on the veu, since the degree of u is
increased and the degree of the other endvertex remains unchanged under this transformation,
rG(e3) < rGveu

(e3), that is, wG(e3) > wGveu
(e3).

The weight of the other edges remain unchanged. Hence, HA(Gveu) < HA(G). �

From the three propositions above, we can get the next Lemma:

Lemma 2.4. Assume that G is a unicyclic graph of order n with maximum degree cycle vertex
u. If G has a minimum HA index, then Tu is a star with center u, and G has at least one but
no more than two cycle vertices of degree two. Moreover, the cycle vertex of degree two must
be the neighbour of u.

Then, we use several propositions to explore the structure of G which attains the minimum
value of HA index.

Proposition 2.5. Assume that G contains exactly one cycle vertex of degree two. If G has
minimum HA index among all the unicyclic graphs of order n, then the length of cycle of G
must be three and each nontrival tree rooted at a cycle vertex must be a star whose center is a
cycle vertex.

Proof. Assume that there exists a unicyclic graph G with minimum HA index. u and v1 are
maximum degree cycle vertex and the cycle vertex with degree two, respectively. Then u and
v1 are pairwise adjacent and Tu is a star with center u by Lemma 2.4. We will take two steps
to prove this proposition.
Step 1: Firstly we are going to prove the length of cycle of G is three.
Suppose that the girth of G is greater than three. Let S = {s1, s2, · · · , sk}, k ≥ 2, be the set of
remaining cycle vertices, where s1 and sk are adjacent to v1 and u, respectively (see Figure 5).
Let s be a maximum degree vertex among all the vertices in S.

Figure 5: the graph G whose girth is greater than three.

Case 1: If s = s1, then s is a local maximum degree cycle vertex and Ts is a star with center
s. Firstly we replace v1u by a pendant edge incident with u and replace v1s by a pendant edge
incident with s. Then we identify the vertices u and s. Define by G̃ the resulting graph. Analogy
with the proof of Proposition 2.1, we can get that HA(G̃) < HA(G), which is a contradiction
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to the fact that G has minimum value of HA index.
Case 2: If s 6= s1, sk, then s is a local maximum degree cycle vertex and Ts is a star with center
s. Let e = v1s1 and perform the v1es-transformation. We can get that HA(Gv1es) < HA(G)
by Proposition 2.3, which is also a contradiction.
Case 3: If s = sk, we let e = v1u and perform the v1esk-transformation. Analogy with the
proof of Proposition 2.3, we can get that HA(Gv1esk) < HA(G), which is also a contradiction.
Hence, the length of cycle of G is three.
Step 2: We need to prove that each nontrival pendant tree rooted at a cycle vertex is a star
whose center is a cycle vertex when the length of cycle is three.
Suppose that v2 is another cycle vertex adjacent to u, and Tv2 is not a star with center v2. Let
v∗ be an arbitrary vertex in NG(v2) − {u, v1} and T

′

v∗ be the maximal tree rooted at v∗ that
does not contain edge v2v∗.
Case 1: For every v∗, it satisfies that dG(v∗) ≤ dG(v2).
We replace all the edges of every T

′

v∗ by the pendant edges incident with u(see Figure 6). Define
the resulting graph by G1.

Figure 6: G −→ G1.

For every pendant edges e1 ∈ G incident with u, we have

rG(e1) =
dG(u)

1
<
dG1

(u)

1
= rG1

(e1).

Then wG(e1) > wG1
(e1).

For cycle edges uvi(i = 1, 2), the degree of u is increased and the degree of vi remain unchanged
under this transformation, so the weight of uvi(i = 1, 2) is decreased. For edge v1v2, the weight
of it is unchanged.
For the edge e2 ∈ EG(Tv2) incident with v2, we have

rG(e2) =
dG(v2)

dG(v∗)
≤ dG(v2)

1
=
dG1

(v2)

1
= rG1

(e2).

Thus wG(e2) ≥ wG1(e2).
For the edge e3 ∈ EG(T

′

v∗), it is replaced by appropriate pendant edge e
′

3 incident with u. Since

dG1
(u)− 2 = |EG(Tu)|+ |EG(Tv2)| − (dG(v2)− 2) ≥ 1 + |EG(Tv2)| − (dG(v2)− 2),

we have
rG(e3) ≤

|EG(Tv2)| − (dG(v2)− 2) + 1

1
<
dG1

(u)

1
= rG1

(e
′

3).

Then wG(e3) > wG1
(e
′

3).
Hence, HA(G) > HA(G1), which is a contradiction to the fact that G has a minimum HA
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index.
Case 2: There exist a v∗ such that dG(v∗) > dG(v2).
We take three steps to transform G into G2. First, we delete the edge v1v2 and add an edge
v1v
∗ in G. Next, replace all the edges in EG(Tv2) \ (EG(T

′

v∗) ∪ v2v∗) by the pendant edges
incident with u. Then, we relocate the edges in T

′

v∗ to the pendant edges incident with v∗(see
Figure 7). Define the resulting graph by G2.

Figure 7: G −→ G2.

For the pendant edges incident with u in G, since dG(u) < dG2
(u), the weight of these edges

are decreased under this transformation.
Let e1 ∈ EG(T

′

v∗), then it is replaced by appropriate pendant edge e
′

1 incident with v∗. Since
|EG(T

′

v∗)|+ 2 = dG2(v
∗), we have

rG(e1) ≤
|EG(T

′

v∗)|+ 1

1
<
dG2

(v∗)

1
= rG2

(e
′

1).

Then wG(e1) > wG2
(e
′

1).
For each e2 in EG(Tv2

)\(EG(T
′

v∗)∪v2v∗), it is replaced by appropriate pendant edge e
′

2 incident
with u. Since

dG2
(u)− 2 = |EG(Tu)|+ |EG(Tv2)| − (|EG(T

′

v∗)|+ 1) ≥ 1 + |EG(Tv2)| − (|EG(T
′

v∗)|+ 1),

we have

rG(e2) ≤
|EG(Tv2)| − (|EG(T

′

v∗)|+ 1) + 3

1
≤ dG2(u)

1
= rG2

(e
′

2).

Thus wG(e2) ≥ wG2
(e
′

2).
Since dG(u) ≤ dG2

(u) and the degree of v1, v2 are unchanged and decreased under this trans-
formation, respectively, then we have wG(uv1) ≥ wG2

(uv1) and wG(uv2) > wG2
(uv2).



Iranian Journal of Mathematical Chemistry 16 (2) (2025) 93− 108 101

For the edge v1v2 ∈ G, we have

rG(v1v2) =
dG(v2)

2
<
dG(v

∗)

2
<
dG2

(v∗)

2
= rG2(v1v

∗).

Then wG(v1v2) > wG2
(v1v

∗).
For the edge v2v∗, since dG(v∗) < dG2

(v∗) and dG(v2) > dG2
(v2) = 2, we have

rG(v2v
∗) =

dG(v
∗)

dG(v2)
<
dG2

(v∗)

2
= rG2

(v2v
∗).

Then wG(v2v
∗) > wG2

(v2v
∗).

Hence, HA(G) > HA(G2), which is also a contradiction. �

Thus, the possible extremal graph which attains the minimum HA index among all the
unicyclic graphs of order n is Sr,k;3, which is obtained by attaching r and k pendent vertices,
respectively, to two vertices of C3. And r + k = n − 3, r ≥ 1, k ≥ 1. Graph Sr,k;3 is just like
the G1 shown in Figure 6.

Proposition 2.6. Assume that G contains exactly two cycle vertex of degree two. If G has
minimum HA index among all the unicyclic graphs of order n, then the length of cycle of G
must be no more than four and each nontrival tree rooted at a cycle vertex must be a star whose
center is a cycle vertex.

Proof. Assume that there exists a unicyclic graph G with minimum HA index. u is maximum
degree cycle vertex. v1 and v2 are two cycle vertices of degree two. Then by Lemma 2.4, Tu is a
star with center u, and uvi ∈ E(G)(i = 1, 2). We will take two steps to prove this proposition.
Step 1: Firstly, we are going to prove the length of cycle of G is no more than four.
Suppose that the girth of G is greater than four. Let S = {s1, s2, · · · , sk}, k ≥ 2, be the set of
remaining cycle vertices, where s1 and sk are adjacent to v1 and v2, respectively (see Figure 8).
Let s be the maximum degree vertex among all the vertices in S.

Figure 8: the graph G whose girth is greater than four.

Case 1: If s = s1, then s is a local maximum degree cycle vertex and Ts is a star with center
s.
Let e = v2sk and perform the v2es-transformation. We can get HA(Gv2es) < HA(G) by
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Proposition 2.3, which is a contradiction to the fact that G has minimum HA index.
Case 2: If s 6= s1, then s is a local maximum degree cycle vertex and Ts is a star with center s.
Let e = v1s1 and perform the v1es-transformation. We can get that HA(Gv1es) < HA(G) by
Proposition 2.3, which is also a contradiction.
Step 2: We need to prove that each nontrival tree rooted at a cycle vertex is a star whose
center is a cycle vertex when the length of cycle is no more than four.
When the length of cycle is three, the proof is already completed.
When the length of cycle is four, suppose that v3 is the remaining cycle vertex not adjacent
to u. If Tv3 is not a star with center v3, replace all the edges of Tv3 by the pendent edges
incident with v3 and then we can get a unicyclic graph with a smaller HA index than G by
Proposition 2.1, which is a contradiction. �

Thus, the possible extremal graph which attains the minimum HA index among all the
unicyclic graphs of order n is one of two graphs shown in Figure 9, in which Sr,k;4 is obtained
by attaching r and k pendent vertices, respectively, to two non-adjacent vertices of C4, where
r+ k = n− 4, r ≥ 1, k ≥ 1, and graph S∗n is obtained by attaching n− 3 pendant vertices to a
single vertex of C3.

Figure 9: Sr,k;4, r + k = n− 4, and S∗n.

Proposition 2.7. For the graphs Sr,k;3 and S∗n, r+k = n−3, we have HA(S∗n) < HA(Sr,k;3).

Proof. For the graphs Sr,k;3 and S∗n, we have

HA(S∗n) =
4(n− 1)(n− 3)

n2
+

16(n− 1)

(n+ 1)2
+ 1,

HA(Sr,k;3) =
4r(r + 2)

(r + 3)2
+

4k(k + 2)

(k + 3)2
+

8(r + 2)

(r + 4)2
+

8(k + 2)

(k + 4)2
+

4(r + 2)(k + 2)

(r + k + 4)2
.

Since n = r + k + 3, we have

HA(S∗n) =
4(r + k)(r + k + 2)

(r + k + 3)2
+

16(r + k + 2)

(r + k + 4)2
+ 1.
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Let g(x) = 8x
(x+2)2 and assume that r ≥ k ≥ 1, then

HA(Sr,k;3)−HA(S∗n) = rh(r + 2) + kh(k + 2) + g(r + 2) + g(k + 2) +
4(r + 2)(k + 2)

(r + k + 4)2

− (r + k)h(r + k + 2)− 2g(r + k + 2)− 1

= r[h(r + 2)− h(r + k + 2)] + k[h(k + 2)− h(r + k + 2)]

+ g(r + 2) + g(k + 2)− 2g(r + k + 2) +
4(r + 2)(k + 2)

(r + k + 4)2
− 1.

Let

A(r, k) = r[h(r + 2)− h(r + k + 2)] + k[h(k + 2)− h(r + k + 2)],

B(r, k) = g(r + 2) + g(k + 2)− 2g(r + k + 2) +
4(r + 2)(k + 2)

(r + k + 4)2
.

Since h(x) is strictly decreasing for x ≥ 1 and g(x) is strictly decreasing for x ≥ 2, it is easy to
get that A(r, k) > 0 and B(r, k) > 0. In the following, we just need to prove A(r, k)+B(r, k) > 1
for r ≥ k ≥ 1.
For the function A(r, k), the partial derivative with respective to r is

∂

∂r
A(r, k) = h(r + 2)− h(r + k + 2) + r[h

′
(r + 2)− h

′
(r + k + 2)]− kh

′
(r + k + 2)

=
4(r + 2)

(r + 3)2
− 4(r + k + 2)

(r + k + 3)2
− 4r(r + 1)

(r + 3)3
+

4r(r + k + 1)

(r + k + 3)3
+

4k(r + k + 1)

(r + k + 3)3

= 4
[ 4r + 6

(r + 3)3
− 4(r + k) + 6

(r + k + 3)3

]
.

Since the function 2x+3
(x+3)3 is strictly decreasing for x ≥ 1, then ∂

∂rA(r, k) > 0, that is, for any
fixed k ≥ 1, A(r, k) is increasing with respect to r.
Case 1: k = 1. We have A(r, 1) ≥ A(1, 1) = h(3)− h(4) + h(3)− h(4) = 2(1216 −

16
25 ) =

22
100 and

B(r, 1) = g(r + 2) + g(3)− 2g(r + 3) +
12(r + 2)

(r + 5)2

> g(3)− g(r + 3) +
12(r + 2)

(r + 5)2

=
24

25
− 8(r + 3)

(r + 5)2
+

12(r + 2)

(r + 5)2
>

24

25
,

so A(r, 1) + B(r, 1) > 1 for r ≥ k = 1. Hence, HA(S∗n) < HA(Sr,k;3) for r ≥ k = 1. When
k ≥ 2, some values of A(r, k) and B(r, k) are shown in Table 1.
Case 2: k = 2. Since A(r, 2) is increasing with respect to r and A(6, 2) > 1, then A(r, 2) > 1
for r ≥ 6. If r ≤ 5, B(r, 2) > 1. So A(r, 2) + B(r, 2) > 1 for r ≥ k = 2. Hence, HA(S∗n) <
HA(Sr,k;3) for r ≥ k = 2.
Case 3: Similarly, we can get that HA(S∗n) < HA(Sr,k;3) for r ≥ k = 3.
Case 4: k ≥ 4. Since A(r, k) is increasing with respect to r for any fixed k ≥ 4, if A(k, k) > 1
for k ≥ 4, then A(r, k) > 1 for r ≥ k ≥ 4, that is A(r, k) +B(r, k) > 1.
When k = 4, A(4, 4) = 1.2737 > 1. Let k ≥ 5, then A(k, k) = 2k[h(k + 2) − h(2k + 2)]. By
mean value theorem, there exist α ∈ (k + 2, 2k + 2) such that h(k + 2)− h(2k + 2) = −kh′(α),
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Table 1: Some values of A(r, k) and B(r, k).

r A(r, 2) B(r, 2) A(r, 3) B(r, 3) A(r, 4) B(r, 4)
2 0.6008 1.2778 - - - -
3 0.7592 1.3102 0.9630 1.3527 - -
4 0.8688 1.3189 1.1059 1.3680 1.2737 1.3889
5 0.9475 1.3158 1.2095 1.3688 1.3967 1.3940
6 1.0057 1.3067 1.2870 1.3617 1.4893 1.39
7 1.05 1.2946 1.3464 1.3501 1.5608 1.3806

thus A(k, k) = −2k2h′(α).
Since h

′
(x) is a negative increasing function for x ≥ 2, then

A(k, k) = −2k2h
′
(α) > −2k2h

′
(2k + 2) = −2k2−4(2k + 1)

(2k + 3)3
=

8k2(2k + 1)

(2k + 3)3
.

Because the function 8k2(2k+1)
(2k+3)3 is increasing, we have A(k, k) ≥ 8×25×11

133 > 1. So, A(k, k) > 1

for k ≥ 5, that is, A(r, k) > 1 for r ≥ k ≥ 5. Hence, HA(S∗n) < HA(Sr,k;3) for r ≥ k ≥ 5. �

Proposition 2.8. For the graphs Sr,k;4 and S∗n, r+k = n−4, we have HA(S∗n) < HA(Sr,k;4).

Proof. For the graphs Sr,k;4 and S∗n, we have

HA(S∗n) =
4(n− 1)(n− 3)

n2
+

16(n− 1)

(n+ 1)2
+ 1,

HA(Sr,k;4) =
4r(r + 2)

(r + 3)2
+

4k(k + 2)

(k + 3)2
+

16(r + 2)

(r + 4)2
+

16(k + 2)

(k + 4)2
.

Since n = r + k + 4, we have

HA(S∗n) =
4(r + k + 1)(r + k + 3)

(r + k + 4)2
+

16(r + k + 3)

(r + k + 5)2
+ 1,

then

HA(Sr,k;4)−HA(S∗n) = rh(r + 2) + kh(k + 2) + 2g(r + 2) + 2g(k + 2)

− (r + k + 1)h(r + k + 3)− 2g(r + k + 3)− 1

= r[h(r + 2)− h(r + k + 3)] + k[h(k + 2)− h(r + k + 3)]

+ 2g(r + 2) + 2g(k + 2)− 2g(r + k + 3)− h(r + k + 3)− 1.

Let

C(r, k) = r[h(r + 2)− h(r + k + 3)] + k[h(k + 2)− h(r + k + 3)],

D(r, k) = 2g(r + 2) + 2g(k + 2)− 2g(r + k + 3)− h(r + k + 3).

Since h(x) is strictly decreasing for x ≥ 1, g(x) is strictly decreasing for x ≥ 2 and g(x) ≥ h(x)
when x ≥ 2, it is easy to get that C(r, k) > 0 and D(r, k) > 0. In the following, we just need
to prove C(r, k) +D(r, k) > 1 for r ≥ k ≥ 1.
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For the function C(r, k), the partial derivative with respective to r is

∂

∂r
C(r, k) = h(r + 2)− h(r + k + 3) + r[h

′
(r + 2)− h

′
(r + k + 3)]− kh

′
(r + k + 3)

=
4(r + 2)

(r + 3)2
− 4(r + k + 3)

(r + k + 4)2
− 4r(r + 1)

(r + 3)3
+

4r(r + k + 2)

(r + k + 4)3
+

4k(r + k + 2)

(r + k + 4)3

= 4
[ 4r + 6

(r + 3)3
− 5(r + k) + 12

(r + k + 4)3

]
.

For any fixed k ≥ 1, the graph of ∂
∂rC(r, k) with respect to r is shown in Figure 10. From

Figure 10, we can see that for any fixed k ≥ 1, ∂
∂rC(r, k) only have one root on r ≥ k, let it

be r0, and when k ≤ r < r0, ∂
∂rC(r, k) > 0, when r > r0, ∂

∂rC(r, k) < 0. Hence, for any fixed
k ≥ 1, C(r, k) is strictly increasing with respect to r on [k, br0c] and decreasing with respect to
r on [dr0e,∞).

Figure 10: the graph of C(r, k) with respect to r when k is a fixed integer.

Case 1: k = 1.

D(r, 1) = 2g(r + 2) + 2g(3)− 2g(r + 4)− h(r + 4)

= 2[g(r + 2)− g(r + 4)] + 2g(3)− h(r + 4)

> 2g(3)− h(5)

=
307

225
> 1.

Hence, HA(S∗n) < HA(Sr,k;4) for r ≥ k = 1.
When k ≥ 2, since limr→∞ C(r, k) = limr→∞[ 4r(r+2)

(r+3)2 −
4r(r+k+3)
(r+k+4)2 + 4k(k+2)

(k+3)2 −
4k(r+k+3)
(r+k+4)2 ] =

4k(k+2)
(k+3)2 , and [ 4k(k+2)

(k+3)2 ]
′
= 2(k+2)

(k+3)3 > 0, then limr→∞ C(r, k) = 4k(k+2)
(k+3)2 ≥

32
25 > 1. Because

C(r, k) is strictly decreasing with respect to r on [dr0e,∞), we can get that for any fixed k ≥ 2,
C(r, k) > 1 for r ∈ [dr0e,∞). When k ≥ 2, some values of C(r, k) and D(r, k) are shown in
Table 2.
Case 2: k = 2, C(r, 2) is increasing on [2, br0c] and decreasing on [dr0e,∞). Since C(4, 2) =
1.0792 > 1 and 2 < 4 < br0c, then C(r, 2) > 1 for r ≥ 4. And if r ≤ 3, we have D(r, 2) > 1.
So, C(r, k) +D(r, k) > 1 for r ≥ k = 2. Hence, HA(S∗n) < HA(Sr,k;4) for r ≥ k = 2.
Case 3: k ≥ 3. Since for any fixed k ≥ 3, C(r, k) is strictly increasing with respect to r
on [k, br0c], decreasing with respect to r on [dr0e,∞) and C(r, k) > 1 for r ∈ [dr0e,∞), if
C(k, k) > 1 for k ≥ 3, then C(r, k) > 1 for r ≥ k ≥ 3, that is C(r, k) +D(r, k) > 1.
When k = 3, 4, C(3, 3) > 1, C(4, 4) > 1. Let k ≥ 5, then C(k, k) = 2k[h(k+2)−h(2k+3)]. By
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Table 2: Some values of C(r, k) and D(r, k).

r C(r, 2) D(r, 2) C(r, 3) D(r, 3) C(r, 4) D(r, 4)
2 0.81 1.7353 - - - -
3 0.9714 1.7354 1.1733 1.7152 - -
4 1.0792 1.7277 1.3118 1.6910 1.4739 1.6530
5 1.1535 1.7188 1.4097 1.6684 1.5905 1.6191

mean value theorem, there exists β ∈ (k+2, 2k+3) such that h(k+2)−h(2k+3) = (−k−1)h′(β),
thus C(k, k) = −2k(k + 1)h

′
(β).

Since h
′
(x) is a negative increasing function for x ≥ 2, then

C(k, k) = −2k(k + 1)h
′
(β) > −2k(k + 1)h

′
(2k + 3) =

8k(k + 1)(2k + 2)

(2k + 4)3
=

2k(k + 1)2

(k + 2)3
.

Because the function 2k(k+1)2

(k+2)3 is increasing, we have C(k, k) ≥ 2×5×36
73 = 360

343 > 1. So, C(k, k) >
1 for k ≥ 5, that is, C(r, k) > 1 for r ≥ k ≥ 5. Hence, HA(S∗n) < HA(Sr,k;4) for r ≥ k ≥ 5. �

By the results above, we can get the following theorem.

Theorem 2.9. If G is a unicyclic graph of order n (n ≥ 3), then

4(n− 1)(n− 3)

n2
+

16(n− 1)

(n+ 1)2
+ 1 ≤ HA(G) ≤ n.

The lower bound is attained only by the graph S∗n, which is obtained by attaching n− 3 pendant
vertices to a single vertex of the cycle C3. The upper bound is only attained by the cycle Cn.

3 Concluding remarks
The purpose of this paper is to find the extremal values of a harmonic-arithmetic index over
unicyclic graphs. We provide the upper and lower bounds of a harmonic-arithmetic index
over unicyclic graphs and characterize the unicyclic graphs that attain the extremal situation,
respectively.
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