Lower and Upper Bounds between Energy‎, ‎Laplacian Energy‎, ‎and Sombor Index of Some Graphs

Document Type : Research Paper

Author

Department of Mathematics‎, ‎Tafresh University‎, ‎Tafresh 39518-79611‎, ‎Iran

10.22052/ijmc.2024.254674.1850

Abstract

‎Ivan Gutman has introduced two essential indices; the energy of a graph G‎, ‎and the Sombor index of that‎. ‎$\varepsilon(G)$‎, ‎which stands for the first index‎, ‎is the sum of the absolute values of all eigenvalues related to the adjacency matrix of the graph $G$‎. ‎The second‎, ‎defined as $SO(G)=\sum _{uv \in E(G)}\sqrt{d_u^2+d_v^2}$‎, ‎where $d_u$ and $d_v$ are the degrees of vertices $u$ and $v$ in $G$‎, ‎respectively‎. ‎It was proved that if $G$ is a graph of order at least 3‎, ‎then $\varepsilon(G)\leq So(G)$ and if $G$ is a connected graph of order $n$ that is not $P_n$ for $n\leq 8$‎, ‎then $\varepsilon(G)\leq \frac{So(G)}{2}$‎.
‎In this paper‎, ‎we have strengthened these results and will obtain several lower and upper bounds between the energy of a graph‎, ‎Laplacian energy‎, ‎and the Sombor index‎.

Keywords

Main Subjects


[1] M. Mohammadi, H. Barzegar and A. R. Ashrafi, Comparisons of the Sombor index of Alkane, Alkyl, and Annulene series with their molecular mass, J. Chem. 2022 (2022) p. 8348525, https://doi.org/10.1155/2022/8348525.
[2] A. Ulker, A. Gursoy and N. K. Gursoy, The energy and Sombor index of graphs, MATCH Commun. Math. Comput. Chem. 87 (2022) 51–58, https://doi.org/10.46793/match.87-1.051U.
[3] A. Ulker, A. Gursoy, N. K. Gursoy and I. Gutman, Relating graph energy and Sombor index, Discrete Math. Lett. 8 (2022) 6–9, https://doi.org/10.47443/dml.2021.0085.
[4] S. Akbari, M. Habibi and S. Rouhani, A note on an equality between energy and Sombor index of a graph, MATCH Commun. Math. Comput. Chem. 90 (2023) 765–771, https://doi.org/10.46793/match.90-3.765A.
[5] J. Guerrero, Laplacian energies of vertices, arxiv:2201.01252v1 [math.CO] (2022).
[6] I. Gutman, Geometric approach to degree based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.
[7] I. Gutman, N. M. M. de Abreu, C. T. M. Vinagre, A. S. Bonifásio and S. Radenkovic, Relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem. 59 (2008) 343–354.
[8] H. Liu, L. You and Y. Huang, Ordering chemical graphs by Sombor indices and its applications, MATCH Commun. Math. Comput. Chem. 87 (2022) 5–22, https://doi.org/10.46793/match.87-1.005L.
[9] M. S. Reja and S. M. A. Nayeem, On Sombor index and graph energy, MATCH Commun. Math. Comput. Chem. 89 (2023) 451–466, https://doi.org/10.46793/match.89-2.451R.
[10] H. Shoshtari and J. Rodríguez., New bounds on the energy of a graph, Commun. Comb. Optim. 7 (2022) 81–90, https://doi.org/10.22049/CCO.2021.26999.1179.
[11] O. Arizmendi, J. F. Hidalgo and O. Juarez-Romero, Energy of vertex, Linear Algebra Appl. 557 (2018) 464–495, https://doi.org/10.1016/j.laa.2018.08.014.
[12] I. Milovanovic, E. Milovanovic and M. Matejic, On some mathematical properties of Sombor indices, Bull. Int. Math. Virtual Inst. 11 (2021) 341–353.
[13] S. Wagner and H. Wang, Introduction to Chemical Graph Theory, Taylor and Francis Group, LLC, 2019.
[14] G. Caporossi, D. Cvetkovic, I. Gutman and P. Hansen, Variable neighborhood search for extremal graphs. 2. Finding graphs with extremal energy, J. Chem. Inf. Comput. Sci. 39 (1999) 984–996, https://doi.org/10.1021/ci9801419.